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Abstract

We consider an exogenous and reversible shock to a groundwater resource, namely

a decrease in the recharge rate of the aquifer. We compare optimal extraction paths

and the social costs of optimal adaptation in two cases: under certainty, i.e. when the

date of occurrence of the shock is known, and under uncertainty, when the date of

occurrence of the shock is a random variable. We show that an increase in uncertainty

leads to a decrease in precautionary behavior in the short run and to an increase in

precautionary behavior in the long run. We apply our model to the particular case of

the Western la Mancha aquifer in Spain. We show that, in this context, it is advanta-

geous for the water agency to acquire information on the date of the shock, especially

for high-intensity and intermediate-risk events.
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1 Introduction

Periods of low precipitation may lead to insu�cient �lling of groundwater resources and
pose challenges for existing management rules (see Amigues (2006) [1], Zilberman and al.
(2003) [20]). This problem may become even more acute in the context of global warming.
Moreover, the evolution of the natural system may be subject to abrupt changes that can
be quali�ed as "regime shifts". Adaptation to such shifts hinges crucially on the available
information about the nature of the change, such as its date and its intensity. In this
paper, we address the problem of regime shifts in the context of groundwater management
and identify the circumstances in which information on the date and intensity of the shock
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is particularly important for a water manager.

We examine a case in which a common groundwater resource, used by several farmers
for irrigation, is subject to dry periods. We use a simple groundwater model, the Gisser
and Sanchez (1990) [10] model (for similar model frameworks, see for example Cummings
(1971) [4] or Roseta-Palma (2003, 2002) [14], [13]), in which we introduce a sudden change
in the dynamics of the resource. Such a shock may occur due to a decrease in mean pre-
cipitation that leads to a decrease in the recharge of the aquifer, or it may correspond to
the abstraction of a certain amount of water that is dedicated to other uses in the case of
a drought, such as �lling drinking water reservoirs.1 The aquifer is managed by a social
planner, the water agency, who wishes to adapt as well as possible to these shocks. We
characterize both the hydrological and the economic consequences of the shock by com-
paring short and long-run levels of resource stocks and social welfare.

In particular, we are interested in discussing the e�ect of information knowledge on
the optimal management of the water resource. To this end, we introduce two types of
shocks in our model: a deterministic shock at a given date and a random shock that may
occur with a certain probability. This allows us to discuss the impact of uncertainty on
precautionary behavior and management e�ciency.

First, when the date of the shock is known, intuitively, one might think that the water
agency would prepare for the event by applying a more careful extraction strategy. How-
ever, our results contradict our intuition and more water is extracted in the short term.
Such a result can already be found in the literature (see Di Maria et al. (2012) [7]), in
the context of polluting resources, where the phenomenon is known as the "announcement
e�ect" or the "abundance e�ect". However, using a numerical example, we show that non-
monotonic extraction behavior is possible in the short term, when the value of the shock
is important and when it takes place later in time. Second, when the date of the shock is
a random variable, some hints about possible solutions can be derived from the literature
on catastrophic events, in the context of groundwater resource management (see Tsur and
Zemel (2012, 2004, 1995) [18], [17], [15]) and pollution control (see Brozovic and Schlenker
(2011) [2], Clarke and Reed (1994) [3], de Zeeuw and Zemel (2012) [6], Tsur and Zemel
(1996) [16] and Zemel (2012) [19]).

In [18], Tsur and Zemel (2012) review the literature on the variety of forms in which
uncertainty enters resource management problems. They distinguish two types of uncer-
tainty: ignorance uncertainty, due to the limited knowledge of certain parameters of the
resource (for example the recharge or instantaneous bene�t may undergo an abrupt shift
when the stock process crosses some unknown threshold) and exogenous uncertainty due

1In reality, such changes would not occur at a precise date but rather over some period of time. In
addition, a decrease in the recharge rate requires a period of time in order to have a real impact on the
aquifer. For simplicity, we consider here that the e�ect of the shock is immediate.
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to random environmental elements (for example weather variability)2. Depending on the
type of uncertainty considered, the relationship between precautionary behavior and an
increase in uncertainty can vary. Some studies show that an increase in uncertainty leads
to non-monotonic changes in precautionary behavior (see Brozovic and Schlenker (2011)
[2], Clarke and Reed (1994) [3], Zemel (2012) [19]), while others show that an increase
in uncertainty leads to a decrease in precautionary behavior (see Tsur and Zemel (2004,
1995) [17]), [15]). Still others conclude that an increase in uncertainty leads to an increase
in precautionary behavior (see de Zeeuw and Zemel (2012) [6], Tsur and Zemel (2004)
[17]). For example, Brozovic and Schlenker (2011) in [2] and Zemel (2012) in [19] found a
non-monotonic relation when several sources of uncertainty are combined. Tsur and Zemel
(2004) proved that an increase in uncertainty leads to more intensive extraction in the
case of irreversible exogenous events.3 In contrast, they showed that more precautionary
behavior is applied in the long run in the case of reversible exogenous events or endogenous
events. Moreover, in [6], de Zeeuw and Zemel (2012) proved that the introduction of a
random jump in the damage function of a pollution control model leads to more precau-
tionary behavior, both in the case of endogenous events and irreversible exogenous events.

In this paper, we study reversible exogenous events and analyze the relationship be-
tween the characteristics of the shock and adaptive behavior in the short run and the long
run. We are especially interested in the exogenous uncertainty of the time parameter T,
when T is a random variable whose realization marks the occurrence of an event. In this
case, Tsur and Zemel argue that, compared with the risk free situation4, the optimal pol-
icy entails more aggressive exploitation in the short term and more conservative extraction
after the occurrence of the event. We show that although our results correspond to the
solutions found by Tsur and Zemel (2012) in [18], our paper di�ers from theirs in sev-
eral ways: First, Tsur and Zemel analyze catastrophic events (such as saltwater intrusion)
which render further use of the resource impossible (unless restoration is undertaken). We
focus on an event that does not hinder further exploitation. Second, we add to the exoge-
nous uncertainty of the time parameter, an abrupt shift in the dynamics of the resource,
and not in the objective function5. Third, we compare optimal adaptation behavior for
di�erent uncertainty scenarios, and do not only compare the risk-free and the uncertainty
situation. Finally, we illustrate the economic implications of the shock with a numerical
example.

We apply our model to the Western la Mancha aquifer in the South of Spain. In this
area, the state of groundwater resources has signi�cant implications for the future provi-

2Similar concepts are those of endogenous and exogenous events used by Tsur and Zemel (1995) in [15].
3In [17], they de�ne that an event is irreversible when its occurrence renders the resource obsolete, and

is reversible when restoration is possible at a cost.
4The risk-free situation corresponds to our initial groundwater problem in the absence of shock.
5In Tsur and Zemel's articles, for reversible events, a penalty function is added to take into account

restorations costs.
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sion of important ecosystem services (see Esteban and Albiac (2011) [8] and Esteban and
Dinar (2012) [9] for details). The average annual groundwater recharge in this aquifer is
360 million cubic meters. In recent decades, the aquifer has been subject to numerous
droughts. Since 1999, the recharge rate has decreased by approximately 100 millions cubic
meters, leading to an estimated decrease of 3000 million cubic meters over the past three
decades (see López-Gunn [12]). In the numerical simulations, we analyze the impact of
such shocks, considering variations in the recharge rates of the same magnitude as past
variations (and not possible future variations caused by climate change). We thus analyze
a lower benchmark problem. Even though we assume that the water agency does its best
to adapt to these shocks, we show that the costs to society are high, and may reach several
million Euros. In addition, we wish to know whether or not the water agency should try to
forecast the date of the shock. We show that it is always advantageous for the water agency
to acquire additional information about the date of the shock. Moreover, this information
is more useful when the shock is more intense and when it takes place in the medium run.
Finally, we con�rm that it is always better for the water agency to be prepared to adapt,
with or without knowledge of the date of the shock, than not to prepare for the shock at all.

This paper is organized as follows. In section 2, we brie�y describe the underlying
Gisser and Sanchez model. We then introduce an exogenous shock in the recharge rate
and derive some theoretical results on optimal adaptation strategies to face this shock.
In section 3, we provide a numerical illustration in which we analyze optimal adaptation
behavior and the impact of the shock on social welfare in the short run and in the long
run. Finally, in section 4, we conclude and make some suggestions for future research.

2 The model

We base our analysis on the groundwater extraction model by Gisser and Sanchez, (see
[10]), where G(t) and g(t) are respectively the stock (in volume)6 and water pumping rate
of the aquifer as a function of time7. We assume that

g = a− bp (1)

is a linear function that represents the demand for irrigation water, where p is the price
of water, and a, b are coe�cients of the demand function, with a, b > 0.

We consider a linear cost function for extractions costs:

C̄ = z − cG, (2)

6G corresponds to the volume of water, and is calculated by multiplying H, the height of the aquifer,
by A*S, where A is the area of the aquifer and S is the storativity coe�cient.

7We omit the time indicator in all the following equations, whenever this is possible without causing
misunderstandings, in order to make the equations easier to read.
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where z, c are coe�cients of the linear cost function (z > 0, c > 0): z includes �xed
costs and maximimum pumping cost and c represents marginal pumping cost.8

The dynamics of the aquifer,

Ġ = −(1− α)g + r (3)

depend on hydrological characteristics of the aquifer, where r is the recharge rate and α is
the return �ow coe�cient, with α ∈ [0, 1).

The farmers' total income, using the agricultural surface characterized by the demand
function of water, equation (1)), is then:∫

g
p(x)dx =

∫
g

a− x
b

dx =
a

b
g − 1

2b
g2.

The problem for the social planner is to maximize social welfare, that is the present
value of farmers' private income, with ρ, the discount rate, taking into account the dynam-
ics of the aquifer (see equation (3)), and subject to the initial conditions and positivity
constraints:

max
g(.)

∫ ∞
0

F (G, g) e−ρt dt,

where

F (G, g) =
a

b
g − 1

2b
g2 − (z − cG)g,

Ġ = −(1− α)g + r,

G(0) = G0 given,

g ≥ 0 G ≥ 0.

The full resolution of the problem is given in Appendix (A.1).

In the following sections, we introduce an exogenous shock in our initial model, i.e. a
decrease in the recharge rate of the aquifer at the date ta. First, we solve the deterministic
case where the date of the shock ta is known, and second, we solve the stochastic case
where ta, is a random variable that follows an exponential distribution.

8The maximum pumping cost is the pumping cost from the deepest point of the aquifer to the surface.
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2.1 The deterministic case

We assume that there is a decrease in the recharge rate from r1 to r2 at a known date ta.
We are interested in the optimal path of extraction in the event this "dry period" occurs.
The problem of the social planner is now :

max
g(.)

∫ ∞
0

F (G, g) e−ρt dt, (4)

where

F (G, g) =
a

b
g − 1

2b
g2 − (z − cG)g, (5)

Ġ =

{
−(1− α)g + r1 if t ≤ ta
−(1− α)g + r2 if t > ta,

(6)

G(0) = G0, ta given, r1 > r2,

g ≥ 0 G ≥ 0.

Indeed, the main problem is to model the fact that the availability of water for irrigation
decreases from ta on. This can happen when there is an estimated decrease in mean
precipitation or because of exceptional extraction of water for other uses from ta on. In
theory, these ideas are equivalent and we can describe them both as a decrease in the
recharge rate9.

Now, we turn to the resolution of the problem. We can solve it in two steps. First, we
�nd φ(ta,Gta), the scrap value function that represents the maximization between ta and
∞, that is the solution of the problem:

max
g(.)

∫ ∞
ta

(
a

b
g − 1

2b
g2 − (z − cG)g

)
e−ρ(t−ta)dt, (7)

Ġ = −(1− α)g + r2,

G(ta) = Gta unknown.

Subsequently, the second step of the problem is to �nd g that maximizes,∫ ta

0

(
a

b
g − 1

2b
g2 − (z − cG)g

)
e−ρtdt + e−ρtaφ(ta,Gta).

9Consider a speci�c extraction of value A, from the date ta on, caused by a need for other uses (water
consumption, industrial use, etc...). Assume there is a return �ow coe�cient, β (0 ≤ β 6= α), for this
speci�c extraction, then this problem is equivalent to the main problem of the decrease in the recharge
rate, if r2 = r − (1− β)A = r1 − (1− β)A =⇒ r1 − r2 = (1− β)A.
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Ġ = −(1− α)g + r1. (8)

G(0) = G0 known.

The full resolution of this modi�ed extraction problem is given in the Appendix (A.2).

Now, we present some theoretical results proved by studying analytical solutions of the
previous problems.

Let g∗r (t) (and G
∗
r(t)) be optimal extractions and the stock for the deterministic shock

when there is a decrease in the recharge rate from r1 to r at ta, with r1 ≥ r ≥ 010;

Proposition 2.1 G∗r(∞) and g∗r (∞) are increasing monotonic functions of r.

Proof :
As we can see in appendices A.2, the steady state of the stock and extractions of the

deterministic problem are given respectively by equations (33) and (31), when r = r2. We
observe that the derivatives of G∗r(∞) and g∗r (∞) with respect to r are positive. �

According to proposition 2.1, the higher the value of the determinitic shock (i.e. the
smaller the value of r), the lower the steady state of the stock and the lower the extractions
in the modi�ed problem. Indeed, when a shock occurs (i.e. r = r2 < r1) the optimal level
of the resource drops in the long run and the resource is less intensively exploited.

Proposition 2.2 G∗r(ta) is an increasing monotonic function of r.

Proposition 2.3 g∗r (0) is a decreasing monotonic function of r.

Proposition 2.4 g∗r (ta) is a decreasing monotonic function of r.

Proofs are available in appendices A.4.1, A.4.2, and A.4.3 respectively.

Proposition 2.5 G∗r(∞) and g∗r (∞) are constant as functions of ta.

Proof We seek to prove that δG∗r(∞)
δta

= 0 and δg∗r (∞)
δta

= 0. Clearly, this follows from equa-
tions (33) and (31). �

10Logically, when r = r1, g
∗
r (t) represents the original problem in section 2.
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Propositions 2.2, 2.3, 2.4 state that the higher the value of the shock (i.e. the smaller
the value of r), the lower the level of the resource at ta and the higher the extractions
in t = 0 and t = ta. However, proposition 2.5 shows that in the long run (the steady
state), optimal stock and extraction behavior do not depend on the date of occurrence of
the shock (ta).

2.2 The stochastic case

Now, the date of occurrence of the shock (ta) is a random variable11. Let fT (t) be the
density function, ψT (t) =

∫ t
0 fT (x)dx, the distribution function, and ΩT (t) = 1 − ψT (t),

the survival function of T.
The problem of the social planner is now to maximize the expected value of the social

welfare, that is the expected value of farmers' total income,

max
g(.)

ET

(∫ ∞
0

e−ρtF(G, g) dt

)
(9)

Ġ =

{
−(1− α)g + r1 if t ≤ T
−(1− α)g + r2 if t > T

G(0) = G0 given,

g ≥ 0 G ≥ 0.

with the pro�t function F(G,g), as in the previous problem,

F (G, g) =
a

b
g − 1

2b
g2 − (z − cG)g. (10)

Following the procedure used in Dasgupta and Heal (see [5]), let φ(G(t)) be the scrap
value function,

φ(G(T )) = max
g(t)

∫ ∞
T

e−ρ(t−T)F(G(t), g(t))dt.

corresponding to the maximisation of total social welfare, taking into account the fol-
lowing dynamics of the aquifer:

Ġ = −(1− α)g + r2.

The maximisation function (9) is equal to

11In what follows, we denote ta = T for the sake of simplicity.
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max
g(.)

∫ ∞
0

fT (T )

[∫ T

0
e−ρtF(G(t), g(t))dt + e−ρTφ(G(T))

]
dT, (11)

so:

max
g(.)

∫ ∞
0

fT (T )

[∫ T

0
e−ρtF(G(t), g(t))dt

]
dT +

∫ ∞
0

e−ρTfT(T)φ(G(T)) dT. (12)

Solving by parts the �rst integral in the previous function (12), we �nd that:

∫ ∞
0

fT (T )

[∫ T

0
e−ρtF(G(t), g(t))dt

]
dT =

∫ ∞
0

e−ρTΩT(T)F(G(T), g(T)) dT.

The maximisation function (12) and hence problem (9) can be written as:

max
g(.)

∫ ∞
0

e−ρt [ΩT(t)F(G(t), g(t)) + fT(t)φ(G(t))] dt, (13)

Ġ = −(1− α)g + r1.

Next, we seek to estimate the distribution of the random shock. We choose an exponen-
tial distribution to estimate the date of occurrence of the shock because it corresponds to a
case of constant hazard (i.e. the conditional density for immediate occurrence is constant).

T now follows an exponential distribution, where fT (t), is the density function:

fT (t) = θe−θt,

ΩT (t) is the survival function,

ΩT (t) = e−θt,

and then, h(t), the conditional density for immediate occurrence,

h(t) =
fT (t)

ΩT (t)
= θ.

The problem of the social planner becomes12:

max
g(.)

∫ ∞
0

e−(ρ+θ)t [F(G, g) + θφ(G)] dt (14)

12We remember that the value of the change in the recharge rate, r2, enters the stochastic problem via
the scrap value function φ(G).
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Ġ = −(1− α)g + r1 (15)

G(0) = G0 given, (16)

g ≥ 0 G ≥ 0. (17)

The full resolution of this modi�ed extraction problem is given in Appendix A.3.

Let G∗
rS

(t), (and g∗
rS

(t)) be optimal solutions of stock and extractions for the stochastic
problem when there is a decrease on the recharge rate from r1 to r at ta, with r1 ≥ r ≥ 0;

Proposition 2.6 G∗
rS

(∞) (and g∗
rS

(∞)) are increasing monotonic (and constant) func-

tions of r.

Proposition 2.7 G∗
rS

(∞) (and g∗
rS

(∞)) are decreasing monotonic (and constant) func-

tions of θ.

Proofs are available in appendices A.4.4 and A.4.5 respectively.

Propositions 2.6 and 2.7 state that the higher the value of the shock (i.e. the smaller
the value of r) and, respectively, the smaller the value of θ, the lower the level of the
resource in the long run, while the water pumping rate stays constant.

2.3 Deterministic vs. stochastic case

One of the objectives of this paper is to compare optimal adaptation behavior when there
is an increase in uncertainty about the date the shock occurs. We have now analytical
solutions for the deterministic problem (in section 2.1) and the stochastic problem (in
section 2.2). A comparison between situations in which the occurrence time is known
or stochastic is meaningful only if the known time (ta) equals the expected value of the
uncertain time (T), that is,

ta = ET (t) =

∫ ∞
0

tθe−θt dt. (18)

Solving by parts the integral in equation (18), we obtain,

ta =
1

θ
.

Now, we present some theoretical results proved by studying the analytical solutions
of the previous problems.

We assume there is a decrease on the recharge rate from r1 to r2 at ta. Then,
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• G∗r2(t), (and g∗r2(t)) are optimal solutions of stock and extractions for the determin-
istic problem, when r = r2;

• G∗
rS2

(t), (and g∗
rS2

(t)) are optimal solutions of stock and extractions for the stochastic

problem when r = r2 ;

Proposition 2.8 G∗r2(∞) < G∗
rS2

(∞) and g∗r2(∞) < g∗
rS2

(∞)).

Proof As we show in equation (33),

G∗r2(∞) =
r2

(1− α)cb
+
r2
ρ
− a

bc
+
z

c
.

From equation (55), we know that,

G∗
rS2

(∞) =
(a− zb)(1− α)(ρ+ θ)− r1(ρ+ θ)− cb(1− α)r1 − b(1− α)2θτ

b(1− α)(−cρ− cθ + 2θυ(1− α))
.

Then, substituing the values of τ and υ (equations (38), (39)), we prove that,

G∗r2(∞)−G∗
rS2

(∞) =
(r2 − r1)E1

E2
,

with,

E1 = (ρ+ η + 4cb(1− α))(cb(1− α+ ρ+ θ)), and

E2 = cb(1− α)(ρη + ρ2 + 4cb(1− α)ρ+ 2θη),

with η > 0 (see equation (40)).
By assumption, (r2−r1) < 0, and all the parameters of the problem are positive. Thus,

E1, E2>0, and, G∗r2(∞)−G∗
rS2

(∞) < 0, as required.

It remains to be demonstrated that g∗r2(∞) < g∗
rS2

(∞). From equations (31) and (53),

g∗
rS2

(∞) =
r1

(1− α)
>

r2
(1− α)

= g∗r2(∞)

because r1 > r2. �
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Proposition 2.8 proves that in the long run, the resource drops to a lower level (and
respectively, extractions are more conservative), in the case of certainty about the date of
the shock than in the case of uncertainty. In the stochastic problem, long-run resource
stocks and long-run extractions do depend on the initial recharge rate r1, which is greater
than recharge rate after the shock, r2. In consequence, steady-state stocks and extractions
are greater than in the deterministic case.

3 Numerical application

In this section, we apply our problem to the Western la Mancha aquifer. We use real
parameter values from several sources (e.g. Esteban and Albiac (2011) [8], Esteban and
Dinar (2012) [9]). Note that we analyze the problem in terms of the stock level of the
aquifer (in volume), i.e, by multiplying the current water table, the area of the aquifer, A,
and the storativity coe�cient, S. The parameter values used are listed in Table 113.
The Western la Mancha aquifer is located in the South of Spain. The development of
intensive irrigated agriculture in recent decades has led to an increase in groundwater
extraction in the area and, as a consequence, a decrease in the water table. It is estimated
that 3000 million cubic meters have been abstracted from the aquifer over the past three
decades (e.g. López-Gunn [12]). This problem has caused signi�cant damage to aquatic
ecosystems and also a�ects human uses downstream. Moreover, the Western la Mancha
aquifer has also su�ered from ine�cient management regimes, (for details see [8]). During
a dry period, it is clear that this problem may become more acute.

3.1 Optimal solutions for the deterministic case

We �rst give a numerical example of the deterministic case. Figure 1 depicts optimal so-
lutions of stock G∗(t) (on the left) and water pumping rate g∗(t) (on the right), for the
original problem described in section 2 (in green) and for di�erent values of a deterministic
shock occurring in the 20th year of resource use, (i.e. ta = 20). More speci�cally, we
simulate a decrease in the recharge from an initial level of r1= 360 to a level of r2= 330
(in red), 300 (in blue) and 290 (in black) million cubic meters per year (Mm3/yr).14

In the deterministic case, long-run resource stocks, G∗(∞), are equal to 78397 Mm3

and long-run extractions, g∗(∞), are equal to 450 Mm3/yr.15 We note that, with a de-

13For details, the groundwater stock is computed by multiplying the height of the aquifer by the aquifer
area and the storativity coe�cient: G0 = H0 ∗A∗S = 640∗5500∗0.023. Coe�cients of pumping costs are
de�ned as follows: z is equal to maximum pumping cost, that is the pumping cost from the deepest point
of the aquifer to the surface and is computed by multiplying the surface elevation by the unit pumping
costs i.e, SL ∗ c′ (with c′ equal to 400 Euros/Mm3.m); c is converted into Euros/(Million Cubic Meters)2

by dividing c′ by A*S.
14We chose ta = 20 years and the di�erent values of the shock following observations made in the area

in the 1990s, (see Esteban and Dinar [9] for details).
15According to López-Gunn [12], renewable extractions are estimated to amount to 300 Mm3/yr.
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Parameters Description Units Value

b Water demand slope (Million Cubic Meters/Year)2 Euros−1 0.097
a Water demand intercept Million Cubic Meters/Year 4403.3
z Pumping costs intercept Euros/Million Cubic Meters 266 000
c Pumping costs slope Euros/(Million Cubic Meters)2 3.162
r Natural recharge Million Cubic Meters/Year 360
G0 Stock level (in volume) Million Cubic Meters 80960
H0 Current water table Meters 640
SL Surface elevation Meters 665
A Aquifer area Square Kilometers 5500
S Storativity coe�cient unitless 0.023
ρ Social discount rate Year−1 0.05
α Return �ow coe�cient unitless 0.2

Table 1: Values of parameters of the Western la Mancha aquifer.

         r1=r2=360

r2=330

r2=300

r2=290

G(t) g(t)

t t

        r1=r2=360

r2=330

r2=300
r2=290

Figure 1: G∗(t) in million cubic meters (left-hand side) and g∗(t) (right-hand side) in
million cubic meters per year for di�erent values of r2 and ta=20 years. Upper right-hand
corner: zoom on g∗(t) between t = 0 and t = 1 years.

crease in r2, the steady state resource drops to a lower level and extractions are more
conservative in the long run. For example, for a shock of 70 Mm3/yr the level of the
resource decreases by 1685 Mm3 and extractions decrease by 87 Mm3/yr. This illustrates
the above proposition 2.1, proved in section 2.1. Second, at the time the shock occurs
the resource is more exploited and extractions are greater the more intense the shock, i.e.
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G∗(ta) decreases and g∗(ta) increases with a decrease in r2. For example, for a shock of
70 Mm3/yr, extractions increase by about 61 Mm3/yr. This illustrates propositions 2.2
and 2.4. We can also con�rm that the resource is more exploited at the beginning of the
exercise the higher the value of the shock: g∗(0) increases from 733 to 739 Mm3/yr, when
r2 decreases by 70 Mm3/yr. This result illustrates the above proposition 2.3.16

Next, we study the impact of the occurrence date of the shock (ta) on optimal behav-
ior. Figure 2 depicts optimal solutions of stock G∗(t) (on the left) and water pumping
rate g∗(t) (on the right) for the original problem described in section 2 (in green) and for
the problem with a shock of 70 Mm3/yr at di�erent values of ta. First, we note that the
long run (steady state) stock and water pumping rate are constant. Hence, the date of
occurrence of the shock has no impact on the steady state values of G∗(t) and g∗(t). This
is proved theorically in proposition 2.5. However, in the short run, the value of g∗(t) (in
t=0 and t=ta) decreases with an increase in ta. For example, g∗(0) decreases by about 43
Mm3/yr when ta increases from ta = 5 to ta = 20. In the same way, g∗(ta) decreases by
about 146 Mm3/yr when ta increases from ta = 5 to ta = 20. Then, we calculate total
extractions before ta and we obtain that they increase by about 8 398 Mm3/yr, when ta
increases from ta = 5 to ta = 20, and as a consequence, we can see that the resource
reaches a lower level at ta the later the shock occurs. In sum, we can say that the date of
occurrence of the shock has an impact on the short run values of G∗(t) and g∗(t).

In �gures 1 and 2, we also observe a surprising behavior concerning the optimal water
pumping rate. Optimal extractions are non-monotonic in the short run: there is �rst a
decrease in extraction and then an increase just before the shock occurs. This behavior
is more pronounced the greater the shock (see Figure 1) and the later it takes place (see
Figure 2). In order to better understand this result, we compute the di�erence between
the deterministic shock and the simple problem, as depicted in �gure 3, for di�erent values
of r2 (left-hand side) and ta (right-hand side). First, the higher the value of the shock, the
higher the amount of water pumping and the quicker the increase in extractions between
t = 0 and t = ta (as illustrated on the left-hand side). This result may be explained by the
fact that the water agency increases short-run extractions when the shock is more intense
in order to accumulate gains and compensate for future losses. Next, the later the shock
occurs, the higher the overall extraction and the slower the increase in extractions before
the occurence of the shock (as illustrated on the right-hand side). The latter result can be
explained by the fact that the water agency has more time to better adapt to the shock.

Next, in Tables 2 and 3, we calculate the social welfare, as de�ned in equation (4),
corresponding to the simulations carried out in the previous �gures 1 and 2. In Table 2 we
show that social welfare increases in the �rst period (before ta, column 1) and decreases in

16We can compare the estimated drop of 3000 Mm3 over the last 30 years reported by López-Gunn to
our values, where G(0)=80960 Mm3 and G(ta = 20) in t = 30 is equal to 77608 Mm3.
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Figure 2: G∗(t) in million cubic meters (left-hand side) and g∗(t)(right-hand side) in million
cubic meters per year for di�erent values of ta and r2 = 290 million cubic meters per year.
Upper right-hand corner: zoom on g∗(t) between t = 0 and t = 0.4 years.

ta=10
ta=20

ta=50

r2=330

r2=300

r2=290

t t

gr2(t)-gr1(t) gr2(t)-gr1(t)

Figure 3: Di�erence between extractions with and without shock in ta = 20 years for
di�erent values of r2 (left-hand side) and with r2 = 290 million cubic meters per year at
di�erent dates (right-hand side).
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(1) (2) (3) 1
3

2
3

[0, ta] [ta, ∞] [0, ∞] (in %) (in %)

r1 = r2 = 360 219 311 87 757 307 068 71 29
r2 = 330 220 893 80 009 300 902 73 27
r2 = 300 222 424 72 720 295 144 75 25
r2 = 290 222 924 70 392 293 315 76 24

Table 2: Social welfare for a shock at ta = 20 years in thousands of Euros (values rounded)
for di�erent values of r2 and di�erent time-periods.

the second period (after ta, column 2) with an increase in the value of the shock. Logically,
the total social welfare (column 3) decreases with an increase in the value of the shock.
For example, when the value of the shock increases by 70 Mm3/yr, total welfare decreases
by about 14 million Euros. The percentage gain in the �rst period (column 4) is the higher
the greater the shock due to the compensation seeking behavior described above. Logi-
cally, the percentage gain in the second period (column 5) is lower the greater the shock.
Next, in table 3, we show that social welfare increases the later the shock occurs. We
can dstinguish two phenomena:17 �rst, the damage occurring later in time is reduced due
to discounting. Second, eliminating the e�ect of discounting, the loss in social welfare is
greater when the shock occurs in early stages than when it occurs at later stages.18 The
latter may be due to the fact that the water agency has more time to better adapt to the
shock, as described in the previous paragraph.

ta = 5 ta = 10 ta = 20 ta = 50 ta = 100 ta = 150 ta = 200

r2 = 359 306 602 306 711 306 856 307 021 307 064 307 067 307 068
r2 = 330 293 489 296 694 300 902 305 710 306 957 307 059 307 067
r2 = 300 280 754 286 987 295 144 304 444 306 853 307 050 307 066
r2 = 290 276 696 283 900 293 315 304 042 306 820 307 047 307 066
r2 = 150 229 727 248 467 272 469 299 478 306 446 307 017 307 064

Table 3: Social welfare (in thousands of Euros) for di�erent values of r2 and ta.

As a result, the theoretical and numerical solutions clearly show that the greater the
shock, the higher both extractions and social welfare in the �rst period (before the occur-
rence of the shock). The water agency accumulates gains to compensate for losses incurred
during the second period. In the second period, the quantity of water extracted and social
welfare are reduced. As a consequence, in the long run, the greater the shock the lower

17We would like to thank an anonymous referee for this interpretation.
18Indeed, the value of a shock corresponding to the di�erence between r2 = 359 and r2 = 150 is equal

to 4 000 Euros in t=200. The value of thes same shock occurring in t=5 but being evaluated at t=200 is
equal to 4481 Euros.
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both extractions and social welfare. Moreover, the greater the shock, the lower the level
of the long-term resource stock, because of the decrease of the recharge rate. Total social
welfare decreases the higher the value of the shock, which shows that the water agency
should expend more e�ort to adapt to the shock. The numerical solutions also suggest
that the later the shock occurs, the lower the speed of adaptation for extractions but the
greater the total social welfare. This means that the water agency has more time to better
adapt to the shock.

3.2 Optimal solutions for the stochastic case

We now construct a numerical example for the stochastic case: ta, the date of the shock,
is a random variable which follows an exponential distribution with a known parameter θ,
(see section 2.2). Indeed, the hazard function is a constant function (equal to θ), which
corresponds to the conditional probability of immediate occurrence (or the probability of
occurrence at t given that the shock has not yet occurred).

In Figure 4, we see the optimal solutions of stock G∗(t) and extractions g∗(t) for the
initial problem described in section 2 (in green) and for di�erent values of the stochas-
tic shock, namely r2= 330 (in red), 290 (in magenta) and 150 (in black) Mm3/yr, when
θ = 0.05. To illustrate, the probability for a shock occurring before the end of the �fth year
is 22 %. In the right-hand corner of the �gure, a zoom shows optimal extraction between
t=0 and t=2 years.

First, we observe that, as previously, the steady state of the stock is lower when the
shock is greater. For example when r2 decreases by 70 Mm3/yr, the stock decreases by
around 237 Mm3. However, water pumping remains the same in the long run. This is
proved theorically in proposition 2.6. Also, at t = 0, the amount of water extracted is
greater, the greater the shock. This is depicted in the right-hand corner of the �gure.

Second, �gure 5 depicts optimal solutions for di�erent values of θ, the parameter of
the distribution function, for a shock of 70 Mm3/yr. When the conditional probability of
immediate occurrence decreases, there is a decrease in the amount of water extracted. For
example, when θ decreases from θ = 0.2 to θ = 0.05, g∗(t) decreases by approximately
32 Mm3 at t = 0. Indeed, θ is a measure of risk, and when this risk decreases, optimal
extraction behavior is less intensive in the short run. This is depicted in the right-hand
side of Figure 5. When the conditional probability of immediate occurrence decreases,
optimal extraction behavior being less intensive, resource use is more prudent, and the
level of the resource increases in the long run. This is shown in the left-hand side of Figure
5. Logically, when θ increases, the level of the resource drops in the long run. This is an
illustration of proposition 2.7.
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Figure 4: G∗(t) in million cubic meters (left-hand side) and g∗(t) in million cubic meters
per year (right-hand side) for di�erent values of r2 and θ = 0.05. Upper right-hand corner:
zoom on g∗(t) between t = 0 and t = 2 years.

Finally, we calculate the social welfare, as de�ned in equation (9), for di�erent values
of the conditional probability of immediate occurrence (θ) and values of the shock (r2).
Results are shown in Table 4. When the conditional probability of occurrence (θ) is �xed,
social welfare decreases with an increase in the value of the shock (i.e. the higher r2). For
example, for a shock of 70 Mm3/yr and θ = 0.05, social welfare decreases by around 19
million Euros. Moreover, when the value of the shock (r2) is �xed, social welfare increases
the lower the "risk", as measured by θ. These results are as expected.

θ = 0.2 θ = 0.1 θ = 0.05 θ = 0.02 θ = 0.01 θ = 0.007 θ = 0.005

r2 = 359 306 585 306 669 306 771 306 890 306 970 306 999 307 015
r2 = 330 293 003 295 450 298 422 302 161 304 214 305 055 305 514
r2 = 300 279 786 284 538 290 302 297 552 301 532 303 164 304 053
r2 = 290 275 568 281 058 287 712 296 082 300 677 302 561 303 587
r2 = 150 226 416 240 579 257 605 278 973 290 715 295 533 298 158

Table 4: Social welfare in thousands of Euros for di�erent values of r2 and θ.

In sum, the numerical solutions show that the higher the value of the stochastic shock,
the lower social welfare, although there is an increase in extractions in the short run. As
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Figure 5: G∗(t) in million cubic meters (left-hand side) and g∗(t) in million cubic meters
per year (right hand side) for di�erent values of θ and r2 = 290 million cubic meters per
year. Upper right-hand corner: zoom on g∗(t) between t = 0 and t = 0.4 years.

in the previous section, this result is logical because the water agency has to exert a bigger
e�ort in order to adapt to the shock. Moreover, a lower risk of occurrence (the decrease
of θ) implies more careful extraction behaviour, a greater long-term resource level, and an
increase in social welfare.

3.3 Deterministic case vs. stochastic case

In this section, we analyze the impact of an increase in uncertainty (concerning the occur-
rence date of the shock) on precautionary extraction behavior and social welfare by using
numerical simulations.

In Figure 6, we compare optimal solutions of the stock G∗(t) and extractions g∗(t) for
the initial problem described in section 2 (in green), for the deterministic shock (in blue),
and for the stochastic shock (in red), when the value of the shock (r2 = 290 Mm3/yr),
the date of the deterministic shock (ta = 20 years), and the conditional probability of the
stochastic shock (θ = 0.05) are �xed. In fact, we compare the deterministic shock and the
stochastic shock such that the known date ta is equal to the expected value of the unknown
date, 1

θ , (see section 2.3 for details).

Focusing on Figure 6, we note that the resource level (on the left-hand side) in the long
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Figure 6: G∗(t) in million cubic meters (left-hand side) and g∗(t) in million cubic meters
per year (right hand side) for the simple problem (in green), the deterministic shock (in
blue) and the stochastic shock (in red), when r2 = 290 million cubic meters per year.
Upper right-hand corner: zoom on g∗(t) between t = 0 and t = 0.4 years.

run is about 1449 Mm3 smaller in the case of the deterministic shock than in the case of
the stochastic shock, although extractions (on the right-hand side) in the long run are less
intensive (by about 87 Mm3 per year). This result illustrates proposition 2.8. In the short
run, however, the inverse holds: the level of the resource is lower in the stochastic case
than in the deterministic case, as depicted on the left-hand side of Figure 6. Moreover,
we note an interesting behavior on the right-hand side of the �gure: the optimal path of
extractions for the deterministic (in blue) and the stochastic case (in red) intersect at two
points P1 (before ta) and P2 (after ta). In the �rst period [0,P1), extractions are more
intensive for the stochastic case, (for details, see the zoom between t=0 and t=0.4 in the
top right-hand corner of the �gure). In contrast, in the second period [P1, P2), extractions
are more intensive for the deterministic case.

Next, we compute the di�erence (D) in social welfare between the deterministic case and
the stochastic case, (see table 5). We �rst observe that D is always positive.19 This means
that the deterministic shock is less costly for society than the stochastic shock. That is, it is
best to have information about the date the shock will occur. Second, we observe that the
more important the value of the shock (i.e., the lower r2), the more important the value of

19We only consider cases in which a shock occurs.
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D. That is, the more advantageous is it for the water agency to acquire information about
the shock. This result is logical and corresponds to results obtained when we analyzed the
two problems (the deterministic and the stochastic problem) independently. Finally, we
can observe a non-monotonic relation between ta and D. Indeed, the function D(ta) �rst
increases and then decreases from a point between ta = 50 and ta = 100 years. Delaying
the shock, or equivalently decreasing the conditional probability of immediate occurrence,
�rst makes it more and more useful for the water agency to acquire more information about
the date of the shock but from a certain date the inverse holds and acquiring information is
less and less useful. This result is due to the combined e�ect of an increase in the value of
information over time and a decrease in distant values of information due to discounting.
The latter e�ect becomes stronger than the former from ta = 50 on.20

ta = 5 ta = 10 ta = 20 ta = 50 ta = 100 ta = 150 ta = 200
θ = 0.2 θ = 0.1 θ = 0.05 θ = 0.02 θ = 0.01 θ = 0.007 θ = 0.005

r2 = 359 17 42 85 131 94 68 53
r2 = 330 486 1 244 2 480 3 549 2 743 2 004 1 553
r2 = 300 968 2 449 4 842 6 892 5 321 3 886 3 013
r2 = 290 1 128 2 842 5 603 7 960 6 143 4 486 3 479
r2 = 150 3 311 7 888 14 864 20 505 15 731 11 484 8 906

Table 5: Di�erence between social welfare in the deterministic case and in the stochastic
case in thousands of Euros for di�erent values of r2 and (ta, θ).

For the water agency in the La Mancha basin, these results mean that it is always
useful to acquire more information on the date the shock will occur. This information is
most advantageous for very signi�cant shocks but also for shocks with an "intermediate-
risk" of occurrence. If an important shock occurs with very low conditional probability
of immediate occurrence, there is still enought time to adapt to the shock and it is not
worthwhile to acquire exact information on the date of the shock. On the other hand, if an
important shock occurs with a very high conditional probability of immediate occurrence,
there is not su�cient time to adapt to the shock and it is not worthwile to know the exact
date of the shock. This may serve as one explanation for the non-monotonic relationship
between ta and D.

3.4 Adaptation vs. non adaptation

We also computed the optimal solutions for our problem when the water agency has no
information about the date the shock will occur, that is, when the water agency does not
adapt to the shock. It is not necessary to provide details on the analytical resolution of this
case. It su�ces only to say that the problem consists in considering two simple problems

20We would like to thank an anonymous referee for this interpretation.
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Figure 7: G∗(t) in million cubic meters and g∗(t) in million cubic meters per year for the
problem of non-adaptation (in red) and adaptation (in blue) at ta = 20 years (left-hand
side) for a shock of 70 million of cubic meters per year.

with in�nite horizon for the two di�erent periods of the problem. Indeed, when the water
agency does not have any information about the shock until it happens, optimal behavior
corresponds with optimal solutions to the simple problem (appendix A.1) with r = r1,
before the shock. Conversely, from the occurrence of the shock (ta), optimal behavior
corresponds with optimal solutions to the simple problem, but now taking the value of the
shock into account (i.e r = r2)

21.

In the following, we compare the situation with non-adaptation to the situation with
adaptation. That is, we compare a case in which the water agency reacts only once the
shock has occurred to a case in which the water agency adapts optimally to the shock
(i.e. the deterministic shock in section 2.1). In �gure 7, we compare optimal solutions of
the stock G∗(t) and extractions g∗(t) for the adaptation case (in blue) and for the non-
adaptation case (in red), when the value of the shock (r2 = 290 Mm3/yr) and the date of
the shock (ta = 20 years) are �xed. We observe (on the right-hand side) that the resource
is more intensively used when the shock is anticipated (in blue) than when it is not antici-
pated. For example, the stock level at ta in the case of total uncertainty exceeds the stock
level in case of adaptation by about 345 Mm3. However, in the long run, the stock level is

21We hence set G2(ta) = G1(ta) with G1(t) optimal solution of the stock for the non-adaptation problem
before ta and G2(t) optimal solution of the stock after ta.
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the same for the two cases. Moreover, we observe (on the left-hand side) that extractions
in the non-adaptation case are lower in the short run but higher in the long run than in
the adaptation case.

Finally, we compute social welfare for the non-adaptation and adaptation cases using
our above numerical example. We observe in Table 6 that losses due to non-adaptation are
high in both the short and long run. For example, we see that total welfare losses from a
lack of adaptation are around 47 million Euros. In particular, losses are around 4 millions
of Euros in the short run and 43 million Euros in the long run.

As a result, it is useful for the water agency to account for information about the oc-
currence of the shock. Indeed, the water agency always does better if it anticipates the
shock than if it reacts to the shock once it has already occurred: short-run, long-run and
overall social welfare are lower in the case of non-adaptation than in the deterministic case.

[0,ta) [ta,∞) TOTAL

non-adaptation 219 311 27 195 246 506
adaptation 222 924 70 392 293 316

Table 6: Social welfare in thousands of Euros for the problem of non-adaptation and
adaptation with ta = 20 years and for a shock of 70 million cubic meters per year.

4 Conclusions and extensions

We have shown that a deterministic shock to the recharge rate leads to an increase in
extraction and social welfare in the short run (before the occurrence of the shock), and
to a decrease in extractions and social welfare in the long run (in the steady state). The
higher the value of the shock, the smaller the steady-state resource stock, which reduces
extraction possibilities in the long run. The water agency hence adapts to anticipated
losses incurred in the long run by accumulating gains in the short run. This compensat-
ing short-term behavior is more important the greater the shock and the later it occurs.
Overall, the more intense the shock, the lower the total social welfare, and the later the
shock occurs, the greater the total social welfare.

Likewise, a stochastic shock leads to an increase in extraction and social welfare in the
short run and to a decrease in extractions and social welfare in the long run. Again, in
the long run, steady-state resource stocks are lower in presence of a shock than without
a shock. Hence, the water agency adapts in a similar way to the deterministic and the
stochastic case (when comparing the stochastic case in which the expected value of the
unknown date equals the known date of the deterministic case).
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However, there are some di�erences between the two problems. The long-run reduction
in steady state resource stocks is smaller in the stochastic case than in the deterministic
case. Moreover, the short-term compensating behavior is di�erent: in the stochastic case,
extractions are higher in the very short run and, fall below extractions in the deterministic
case (before increasing again in the medium and long run). Overall, total social welfare is
greater in the deterministic case than in the corresponding stochastic case.

We conclude that an increase in uncertainty leads to more conservative extraction in
the long run and to more intensive extraction in the very short run. This adaptation be-
havior is more pronounced the higher the conditional probability of immediate occurrence.
However, an increase in uncertainty also leads to less e�cient water management: social
welfare is lower in the stochastic case than in the deterministic case. For the water agency
in the La Mancha basin, this means that it is always better to acquire information about
the date of the regime shift than to adapt to a regime shift on a stochastic date.

More speci�cally, information acquisition is more important if future shocks are po-
tentially important: the higher the value of the shock, the higher the gain from switching
from the stochastic to the deterministic case. Furthermore, for a �xed intensity of po-
tential shocks, information acquisition is greatest for intermediate "risks": for a very low
conditional probability of immediate occurrence, there is still enough time to adapt to the
shock, and it is not worthwhile to acquire exact information on the date of the shock; for
a very high conditional probability of immediate occurrence, there is not su�cient time to
appropriately adapt to the shock, and it is not worthwhile to know the precise date of the
shock. Finally, we note that the water agency always does better if it anticipates the shock
than if it reacts once the shock has occurred: short-run, long-run and overall social welfare
are lower in the case of non-adaptation than in the deterministic or stochastic cases. Policy
recommendations could thus consist in �rst estimating the occurrence probabilites of the
shock and evaluating a more exact occurrence period (the "date") only if the event falls in
the category of "high-intensity/intermediate-risk" events.

With respect to the literature, we con�rm that an exogenous reversible shock leads to
the "announcement e�ect" (see Di Maria et al. (2012) [7]) when the shock is deterministic.
Additionally, we show that non-monotonic extraction behavior is optimal. We also con�rm
that an exogenous shock under uncertainty leads to more precautionary behavior in the
long run and to increased extraction in the short run (see Tsur and Zemel (2012) [18]),
compared to the risk-free situation, and we extend these results by comparing uncertain
and deterministic cases and considering a reversible event occurring at an uncertain date.

There are several possible extensions to our paper. We could examine the impact of
several successive changes in recharge rates: for example the recharge could decrease be-
cause of a decrease in precipitation or a more intensive use of resources by other users,
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as discussed above, but it could then increase, for example as a result of investment in
alternative resources, such as desalinization plants. We could consider a case in which the
conditional probability of occurrence is dependent on some element of the dynamic system,
such as the past evolution of the recharge rate. In addition, we could consider the case in
which the recharge rate is stochastic, instead of the occurrence date of the shock. Finally,
uncertainty about the extent of climate change may diminish over time: if new information
is acquired during the time period concerned, we would need a new optimization method
that accounts for rolling horizons.

A The model

A.1 Resolution of the simple problem

The Hamiltonian of this problem is given by:

H =
a

b
g − 1

2b
g2 − (z − cG)g + λ(−(1− α)g + r),

where λ is the adjoint variable. Applying the maximum principle and assuming interior
solutions, we have the usual �rst order conditions:

∂H

∂g
= 0 ⇒ a

b
− 1

b
g − (z − cG)− λ(1− α) = 0, (19)

λ̇ = −∂H
∂G

+ ρλ ⇒ λ̇ = −cg + ρλ. (20)

From (19), we �nd the optimal extraction volume as a function of the resource stock
and the shadow price:

g = a− zb+ cbG− λb(1− α). (21)

Substituting (21) in the equations of motion of the state (3) and adjoint variable (20), we
have the following dynamic system:

Ġ = r − (1− α)(a− zb)− cb(1− α)G+ λb(1− α)2, (22)

λ̇ = c(a− zb)− c2bG+ (cb(1− α) + ρ)λ, (23)

with G(0) = G0, which allows us to �nd the roots of the characteristic polynom:

ρ1,2 =
ρ±

√
ρ2 + 4cb(1− α)ρ

2
. (24)

From equations (21), (22) and (23), for Ġ = 0 and λ̇ = 0, we �nd the steady state of the
problem:
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g∞ =
r

(1− α)
, (25)

λ∞ =
cr

ρ(1− α)
, (26)

G∞ =
r

cb(1− α)
+
r

ρ
− a

cb
+
z

c
. (27)

Since we assume that all parameters are positive, g∞ and λ∞ in equations (25) and
(26) are always positive. Moreover, in what follows, we consider parameters such that G∞
(in equation (27)) is positive.

Finally, we have the optimal extraction paths, with ρ2, the negative root:

G∗(t) = eρ2t(G0 −G∞) + G∞, (28)

g∗(t) =
r

(1− α)
− ρ2

(1− α)
eρ2t(G0 −G∞), (29)

λ∗(t) = eρ2t(λ0 − λ∞) + λ∞, (30)

and,

λ0 =
a

b(1− α)
− z − cG0

(1− α)
− 1

b(1− α)2
(r − ρ2(G0 −G∞)),

which we �nd by combining equations (3) and (19).

A.2 Resolution of the deterministic problem

To solve this problem, we separate it into two parts and proceed by backward induction.
First, we solve the maximization between ta and ∞, proceeding as in (A.1).

The steady state of the problem is:

g∞ =
r2

(1− α)
, (31)

λ∞ =
cr2

ρ(1− α)
, (32)

G∞ =
r2

cb(1− α)
+
r2
ρ
− a

cb
+
z

c
, (33)

and we know that solutions can be written as follows:

G+
r2(t) = eρ2(t−ta)(Gta −G∞) + G∞, (34)

λ+r2(t) = eρ2(t−ta)(λta − λ∞) + λ∞, (35)
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g+r2(t) =
r2

1− α
− ρ2

(1− α)
(Gta −G∞)eρ2(t−ta), (36)

with,

λta =
a

b(1− α)
+
−z + cGta

(1− α)
− r2
b(1− α)2

+
1

b(1− α)2
ρ2(Gta −G∞), Gta unknown.

Substituting (34) and (36) in problem (7), we can compute the scrap value, φ(Gta) (see
equation (7)), that is22:

φ(Gta) = σ + τGta + υG2
ta, with23 (37)

τ =
−r2ρ(4cb(1− α) + ρ) + ρ2(1− α)(a− zb) + 4cb(1− α)2ρ(a− zb)

ρ(1− α)2b(η + ρ+ 4cb(1− α))

+
(2cb(1− α) + ρ)r2η − ρ(1− α)η(a− zb))

ρ(1− α)2b(η + ρ+ 4cb(1− α))
, (38)

υ = − c(−4cb(1− α)− ρ+ η)

(1− α)(η + ρ+ 4cb(1− α))
, and (39)

η =
√
ρ
√
ρ+ 4bc(1− α). (40)

We now turn to the second part of the problem, between 0 and ta, considering the
optimal solution for the �rst part. The Hamiltonian can be written as:

H =
a

b
g − 1

2b
g2 − (z − cG)g + π(−(1− α)g + r1),

where π is the adjoint variable. We are now in a free-endpoint problem, with ta known and
need an additional transversality condition (see for example Léonard and Ngo van Long
[11]):

π(ta) =
∂φ(ta,Gta)

∂Gta
= 2υGta + τ.

Applying the maximum principle and assuming interior solutions, we have the usual
�rst order conditions (19), (20) and the equations of motion of the state (3), with r = r1.
We have a system of di�erential equations:

Ġ = r1 − (1− α)(a− zb)− cb(1− α)G+ πb(1− α)2, (41)

22We �nd that the expression φ(ta,Gta) does not have the independent term ta. In what follows, we
write the scrap value function, φ(Gta).

23We do not detail expression of σ because it is not necessary for the resolution of the problem, but it
is available from the authors upon request.
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π̇ = c(a− zb)− c2bG+ (cb(1− α) + ρ)π, (42)

and we know that the solutions of the �nite problem are now, of the shape:

G−r2(t) = A1e
ρ1t + A2e

ρ2t + A3, (43)

π−r2(t) = B1e
ρ1t + B2e

ρ2t + B3,

with,

G−r2(0) = A1 +A2 +A3 = G0, (44)

π(ta) = B1e
ρ1ta + B2e

ρ2ta + B3 = 2υGta + τ, (45)

and ρ1, ρ2 described in equation (24).
This constitutes a system of 6 equations and 6 unknowns, which we can solve to �nd

optimal solutions for the problem for the �rst period, between 0 and ta. We �nd optimal
values of Ai, Bi (i = 1..3)24:

Ai = Ci1 + Ci2(2υG
∗
r(ta) + τ), i=1,2,

with,

C1
1 =

b(1− α)(ρc(r1 + (1− α)eρ2ta(a− zb)− r1eρ2ta)− ρ2cr1 + (1− α)c2(r1b+ eρ2taρbG0 − r1beρ2ta))

D1
,

C1
2 =

b(1− α)2ρ(ρ2 − ρ− cb(1− α))

D1
,

D1 = ρ((ρ2−ρ)eρ1tacb(1−α)+c2b2(1−α)2(eρ2ta−eρ1ta)−cb(1−α), ρ1e
ρ1ta+ρ1e

ρ1ta(ρ2−ρ)),

C2
1 =
−(cb(1− α) + ρ− ρ2)(ρ1eρ1taρ((1− α)(a− zb)− r1) + c2b2(1− α)2(G0ρ+ r1 − r1eρ1ta)

D2

+cb(1− α)((G0ρ− r1)eρ1taρ1 − ρr1eρ1ta) + cb(1− α)2eρ1taρ(a− zb))
D2

,

C2
2 =

(cb(1− α) + ρ− ρ2)(cb2(1− α)3ρ)

D2
,

24We do not provide detailed solutions of Bi (i = 1..3) because the equations are too long and they are
not necessary for the proofs, however, they are available from the authors upon request.
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D2 = cb(1−α)ρ((ρ2−ρ)cb(1−α)eρ1ta+c2b2(1−α)2(eρ2ta−eρ1ta)−cb(1−α)eρ1taρ1−ρeρ1taρ1+eρ1taρ1ρ2),

and,

A3 = −r1ρ− ρa+ ρzb+ ραa− ραzb+ cr1b− cr1bα
bρ(α− 1)c

. (46)

Finally, we combine the solutions of the two periods such that G−r2(ta) = G+
r2(ta), and

we obtain optimal solutions of stock G∗r2(t) and extractions g∗r2(t) for the deterministic
problem.

A.3 Resolution of the stochastic problem

The Hamiltonian of the stochastic problem is:

H =
a

b
g − 1

2b
g2 − (z − cG)g + θφ(G) + γ(r1 − (1− α)g)

with φ(G) described in (37) and γ the adjoint variable. Applying the maximum principle
and assuming interior solutions, we have the usual �rst order conditions:

δH

δg
= 0 =⇒ a

b
− 1

b
g − (z − cG)− γ(1− α) = 0 (47)

γ̇ = −δH
δG

+ (ρ+ θ)γ =⇒ γ̇ = −cg − θ δφ(G)

δG
+ (ρ+ θ)γ

=⇒ γ̇ = −cg − θ(2υG+ τ) + (ρ+ θ)γ (48)

From (47), we �nd the optimal extraction volume as a function of the resource stock
and the shadow price:

g = a− zb+ cbG− γb(1− α). (49)

Substituting (49) in the equations of motion of the state (15) and adjoint variable (48),
we have the following dynamic system:

Ġ = r1 − (a− zb)(1− α)− cb(1− α)G+ b(1− α)2γ, (50)

γ̇ = −c(a− zb)− θτ − (c2b+ 2θυ)G+ (cb(1− α) + ρ+ θ)γ, (51)

where G(0) = G0, which allows us to �nd the roots of the characteristic polynom:

ν1,2 =
ρ+ θ

2
±
√
ρ2 + 2ρθ + θ2 + 4bc(1− α)(ρ+ θ)− 8bθυ(1− α)2

2
. (52)
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From equations (49), (50) and (51), for Ġ = 0 and γ̇ = 0, we �nd the steady state of
the problem:

g∞ =
r1

(1− α)
, (53)

γ∞ =
−c2br1 − θτcb(1− α) + 2θυ(1− α)(a− zb− r1)

b(1− α)(−cρ− cθ + 2θυ(1− α))
, (54)

G∞ =
(a− zb)(1− α)(ρ+ θ)− r1(ρ+ θ)− cb(1− α)r1 − b(1− α)2θτ

b(1− α)(−cρ− cθ + 2θυ(1− α))
, (55)

with τ and υ described in equations (38) and (39). We consider parameters such that G∞
and g∞ (in equations (55) and (53)) are positive.

Finally, we have the optimal extraction paths, with ν2, the negative root:

G∗
rS2

(t) = eν2t(G0 −G∞) + G∞, (56)

g∗
rS2

(t) =
r1

(1− α)
− ν2

(1− α)
eν2t(G0 −G∞), (57)

with G∞ described in equation (55).

A.4 Proof of propositions

A.4.1 Proposition 2.2: G∗r(ta) is a increasing monotonous function of r.

Proof :
We seek to prove that δG∗r(ta)

δr > 0.
As we prove in appendix A.2,

φ(G) = σ + τG∗r(ta) + υG∗r(ta)
2, (58)

π(ta) = G∗r(ta) + 2υG∗r(ta), (59)

G∗r(ta) = A1e
ρ1ta + A2e

ρ2ta + A3, (60)

and,

Ai = Ci1 + Ci2(2υG
∗
r(ta) + τ), i=1,2, (61)

where υ and τ are functions of r, Ci2(i = 1, 2), and A3 are functions that does not
depend on r.

The derivative of G∗r(ta) with respect to r is then,
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δG∗r(ta)

δr
=
δA1

δr
eρ1ta +

δA2

δr
eρ2ta , (62)

with,

δAi
δr

= Ci2(2
δυ

δr
G∗r(ta) + 2υ

δG∗r(ta)

δr
+
δτ

δr
). (63)

Substituing the value G∗r(ta) (equation (60)) in equation (63) and rearranging equation
(62), we obtain,

δG∗r(ta)

δr
=
M1(eρ1ta − eρ2ta)e−ρ1ta

M2
, (64)

with,

M1 = 2(1− α)2c2b2
√
ρ+ 4b(1− α)c, (65)

M2 = (ρ+ 4b(1− α)c)
√
ρ(3b(1− α)cρ+ b(1− α)cη + ρ2 + ηρ), (66)

and, ρ1 > 0, ρ2 < 0 and η > 0, as described in equations (24) and (40).
As all parameters of the model are positive, expressions of M1, M2 and η in equations

(65), (66), and (40) respectively, are positive expressions. Thus, the right-hand side of

equation (64) is greater than 0, and
δG∗r2 (ta)

δr2
> 0. �

A.4.2 Proposition 2.3: g∗r (0) is a decreasing monotonous function of r.

Proof We have to prove that δg∗r (0)
δr < 0.

Substituing the derivate of equation (43) in equation (8) of the dynamics of the aquifer,
we obtain g∗r (t). Evaluating this function in t=0, we see that,

g∗r (0) =
1

1− α
(r1 − ρ1A1 − ρ2A2).

The derivative with respect to r is then,

δg∗r (0)

δr
= − 1

1− α
(ρ1

δA1

δr
+ ρ2

δA2

δr
), (67)

with δAi
δr (i = 1, 2) described in equation (63).

Substituing values of the functions in the right-hand part of equation (67), we obtain,

δg∗r (0)

δr
=

N1 ∗N2

N3 ∗N4 ∗N5
, (68)
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with,

N1 = 4c2b2(1− α)2, (69)

N2 = −c2b2(1− α)2(η(5− e−ηta) + ρ(13− e−ηta))− cb(1− α)(5ρη + 7ρ2)

−ρ3 − ηρ2 − 4c3b3(1− α)3(1− e−ηta), (70)

N3 = 4cb(1−α)ρeρ1ta+2cb(1−α)ηeρ1ta+2c2b2(1−α)2(eρ1ta−eρ2ta)+ρ2eρ1ta+ρηeρ1ta , (71)

N4 = η + ρ+ 4cb(1− α), (72)

N5 = 3cb(1− α)ρ+ cb(1− α)η + ρη + ρ2, (73)

and, η > 0, ρ1 > 0, ρ2 < 0 described in equations (24) and (40).
Since we assume that all parameters of the model are positive, the expressions N1, N3,

N4, and N5 in equations (69), (71), (72), and (73) respectively, are positive expressions,
and N2 in equation (70) is a negative expression. Thus, the right-hand side of equation

(68) is less than 0, and δg∗r (0)
δr < 0. �

A.4.3 Proposition 2.4: g∗r (ta) is a decreasing monotonous function of r.

Proof We seek to prove that δg∗r (ta)
δr < 0.

Proceeding as in appendix A.4.2, but evaluating in t = ta, we write,

δg∗r (ta)

δr
= − 1

1− α
(ρ1

δA1

δr
eρ1ta + ρ2

δA2

δr
)eρ2ta , (74)

with δAi
δr (i = 1, 2) described in equation (63).

Substituing values of the functions in the right-hand part of equation (74), we obtain,

δg∗r (ta)

δr
=
D1 ∗D2

D3
, (75)

with,

D1 = −c2b2(1− α), (76)
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D2 = (4cb(1− α) + ρ)(1 + e−ηta) + (1− e−ηta)η, (77)

D3 = 7cb(1− α)ρ2 + 4c2b2(1− α)2(3ρ+ η) + ρ
3
2 η + 5cb(1− α)ρη + ρ3, (78)

and η > 0 (see equation 40).
Since we assume that all parameters of the model are positive, the expression D1 in

equation (76) is a negative expression, and expressions D2 and D3 in equations (77) and
(78), respectively, are positive expressions. Thus, the right-hand side of equation (75) is

less than 0, and δg∗r (ta)
δr < 0. �

A.4.4 Proposition 2.6: G∗
rS

(∞) (and g∗
rS

(∞)) are increasing monotonic (and
constant) functions of r.

Proof We seek to prove that
δG∗

rS
(∞)

δr > 0 and
δg∗

rS
(∞)

δr = 0.
First, if we derive equation (55) with respect to r, we see that,

δG∗
rS

(∞)

δr
=

−(1− α)θ δτδr
(−cρ− cθ + 2θυ(1− α))

. (79)

with υ (equation (39)), a function of r.
Deriving τ (equation (38)) with respect to r and substituting this in (79),

δG∗
rS

(∞)

δr
=
θ ∗ S1

S2
,

with,

S1 = ρ(η − ρ) + q(η − 2ρ),

S2 = ρbc(1− α)(ρη + ρ2 + 4ρbc(1− α) + 2θρ),

q = 2cb(1− α)

and η > 0 as described in equation (40). Assuming all parameters are positive, we see
that q > 0 and hence S2 > 0. It remains to be demonstrated that S1 > 0.

S1 > 0⇐⇒ ρ(η − ρ) + q(η − 2ρ) > 0⇐⇒ ρη + qη > ρ2 + 2qρ⇐⇒ η >
ρ(2q + ρ)

ρ+ q

As η =
√
ρ
√
ρ+ 2q, (see equation (40)),
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η >
ρ(2q + ρ)

ρ+ q
⇐⇒ √ρ

√
ρ+ 2q >

ρ(2q + ρ)

ρ+ q
⇐⇒ ρ2 + 2qρ >

ρ2(2q + ρ)2

(ρ+ q)2

⇐⇒ (ρ2 + 2qρ)(ρ+ q)2 > ρ2(4q2 + 4qρ+ ρ2)

⇐⇒ ρ4 + 2qρ3 + q2ρ2 + 2qρ3 + 4q2ρ2 + 2q3ρ > 4ρ2q2 + 4qρ3 + ρ4 ⇐⇒ q2ρ2 + 2q3ρ > 0.

As q2ρ2 + 2q3ρ is always a positive expression, S1>0 and thus,
δG∗

rS
(∞)

δr > 0.

Finally, we can see from equation (53) that
δg∗

rS
(∞)

δr = 0. �

A.4.5 Proposition 2.7: G∗
rS

(∞) (and g∗
rS

(∞)) are decreasing monotonic (and
constant) functions of θ.

Proof We seek to prove that
δG∗

rS
(∞)

δθ < 0 and
δg∗

rS
(∞)

δθ = 0.
First, if we derive equation (55) with respect to θ, we see that,

δG∗
rS

(∞)

δθ
= 2(r1 − r2)

T1

T2
, (80)

with,

T1 = (ρ+ 4cb(1− α))(ρ− η),

T2 = ρ2 + ρ(η + 4cb(1− α)) + 2ηθ.

By assumption r1 − r2 > 0, all parameters are positive, and from the expression of η
in (40), we see that ρ < η, and thus, T1<0 and T2>0.

Hence, the right-hand part of equation (80) is smaller than 0, and
δG∗

rS
(∞)

δθ < 0.

Finally, we see from equation (53) that
δg∗

rS
(∞)

δθ = 0. �
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