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Abstract

In this paper we study the optimal solutions of a model of natural re-

source management which allows for both impulse and continuous har-

vesting policies. This type of model is known in the literature as mixed

optimal control problem. In the resource management context, each

type of control represents a different harvesting technology, which has a

different cost. In particular we want to know when the following conjec-

ture made by Clark [2005] is an optimal solution to this mixed optimal

control problem: if the harvesting capacity is unlimited, it is optimal to

jump immediately to the steady state of the continuous time problem

and then to stay there. We show that under a particular relationship

between the continuous and the impulse profit function, the conjecture

made by Clark is true. In other cases, however, it is either better to use

only continuous control variables or to jump to resource levels which

are smaller than the steady state and then let the resource grow back

to the steady state. These results emphasize the importance of the cost

functions in the modelling of natural resource management.

Keywords: impulse and continuous control, impulse and

continuous cost functions, natural resource management
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1. Introduction

In this paper, we study an optimal control model which allows both, con-

tinuous control variables and unlimited or impulse control variables. This

allows us to analyse the conjecture made by Clark: if the harvesting capacity

becomes unlimited, it is optimal to jump immediately to the steady state

and then to stay there.

Our model is a simple extension of the usual bioeconomic models described

by Clark [2005] and is related to the fundamental ideas of turnpike theorems

(see McKenzie [1976] for an overview).1 In the optimal control literature, it

is well known that the optimal solution to continuous time singular optimal

control problems with one state variable consists in the Most Rapid Approach

Path (MRAP) to the steady state (turnpike property). If the initial state of

the system is greater (smaller) than the steady state, the solution consists in

applying the upper (lower) bound of the controls until the steady state and

then to stay in the steady state. However, this solution supposes that the

set of admissible controls is bounded. In the case where the set of admissible

controls is not bounded, there does not exist a solution to the problem.

In some cases, it can be interesting to assume unconstrained control ca-

pacities. Consider, for example, the case where the state variable represents

a capital stock and the control variable, the payments withdrawn. The max-

imum possible amount of payments depends on the agreement between the

bank and the investor and one can imagine that the whole capital stock

can be withdrawn at once. Next, consider the case where the state variable

represents a natural resource and the control variable the harvest. The max-

imum possible amount of harvest depends on the harvest technology and one

should consider the fact that technological progress has shifted the relation-

ship between stocks and harvest capacity. Indeed, nowadays, large combines
1As pointed by one anonymous referee, the turnpike property was first discussed by von
Neumann and Ramsey but the term is often tracked back to Samuelson [1949]. See also
Samuelson [1965], Dorfman et al. [1958], Sethi [1977] and Hartl and Feichtinger [1987].
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are able to harvest 60 tons of grain per hour, large timber harvesters can

clear cut several hectares a day and big trawlers are able to catch over 250

tons of fish a day. If the targeted stock is a particular hectare of forest or a

particular surface school of fish, one might imagine the whole stock can be

withdrawn at once.

Mathematically, considering unbounded controls "simply means that dis-

continuous jumps in the state variable, [...] are feasible" [Clark, 2005, p.58].

But as reminded above this implies that the continuous control problem

considered in the first place does not have any solution. Clark describes the

type of solution expected: "Under such conditions the most rapid approach

solution obviously utilizes such discontinuous jump to transfer [the stock]

instantly to the singular path. The control that effects such a discontinuous

jump is referred to as an impulse control" [Clark, 2005, p.58]. Hence, he

suggests to widen the set of admissible controls to also allow for impulse

controls. With impulse controls, it is possible to remove part of the stock of

the population instantaneously.

In this paper, we study the optimal solutions of a model which allows for

both impulse control and continuous control variables and which is called

below a mixed control problem. Our goal is to find a control that maximizes

the gains in this mixed control problem. In particular we want to know

whether the solution described by Clark is optimal: to jump to the steady

state in the first place and then to stay there. We show that one solution

to the mixed control problem is indeed the solution described by Clark, but

this solution needs particular conditions to be made on the benefit or cost

function. To be specific, we assume (like Clark) that unit harvest costst are

c/x (with c constant), but unlike Clark, we allow for different values of c for

continuous and impulse harvesting respectively. We show that Clark’s claim

is correct if these values are the same, i.e. if impulse gains are the integral

of continuous gains, but not otherwise. In the other cases, it is either better
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to use only continuous control variables or to jump to resource levels which

are smaller than the steady state and then let the resource grow back to

the steady state. It seems indeed quite intuitive that the optimum would be

to use the cheaper harvesting technique exclusively. It is however necessary

to distinguish the transitory part and the long-term rate of gain, for two

reasons: from a technical point of view, to ensure existance of the solution,

and from a practical point of view, in all cases where the transition phase is

long enough to have economic importance.

From a mathematical point of view the mixed control problem solves some

kind of "compactness" of the respective controls set. On the one hand we

need to introduce the impulse control because it is our mathematical tool

to complete the space of controls when the continuous control is unbounded

and the introduction of impulsions allows to have a solution. On the other

hand, (see Erdlenbruch et al. [2013]), pure impulse control problems with

integral gains do not have a solution and the introduction of continuous

controls allows to have one.

The motivation of our paper is to show that one must to be careful

when modelling resource management with different harvesting technologies.

When the representation of the problem has changed, for example because

the harvest capacity is considered to be unbounded, it is necessary to adapt

not only the control variable but also the other parameters of the model, in

particular the cost and benefit functions.

In our simple model the characteristics of harvesting are modelled using

two different kinds of technologies, represented by different kinds of con-

trols. This is the main extension with respect to existing models introduced

by Clark. One of the controls (the continuous one) is a mathematical rep-

resentation of "harvesting a bit at all times", the other one (the impulse

control) is the representation of "harvesting a lot at some distant times".
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The cost of these harvesting techniques can of course be different. It is thus

interesting to ask whether there is one technology that is always better than

the other. Or whether one should be used in the transition phase and the

other in the long-term. We show that the mixed strategy: "harvesting first a

lot" and "harvesting a bit at all times in the long-run" is indeed an optimal

strategy, under certain conditions on the gain functions, i.e. when particular

harvesting technologies are in place.

The rest of the paper is organized as follows: In Section 2, we review the

solutions of the pure continuous and pure impulse control problems described

in the literature and which we need to motivate our research question. In

Section 3, we present the mixed control and we show that a solution can

be characterized by a Hamilton-Jacobi-Bellman equation. In Section 4, we

introduce particular functional forms for the dynamics and the profit func-

tions and characterize the steady state of the continuous control problem as

a potential long-term equilibrium. In Section 5, using the Hamilton-Jacobi

-Bellman equation, we solve the mixed control problem under different as-

sumptions on the cost/benefit function and show under which conditions

Clark’s policy is an optimal solution to our mixed control problem. We also

show the non optimality of this policy in other cases. In Section 6, we make

some concluding remarks.

2. Continuous and impulse control problems in the literature

In this section, first, we are going to present the usual harvesting model

in continuous time in order to introduce Clark’s conjecture, the need of

introducing impulse controls and the purpose of our paper.

2.1. Pure continuous control problem.

We consider a model of exploitation of natural resources in continuous

time. In this kind of models the dynamics consists of an expression that

corresponds to the natural evolution of the system to which is subtracted a
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rate of extraction. The natural evolution rate depends on the current state of

the system. More precisely, the system evolves naturally according to F (x)

and there is the usual rate of continuous removal α(·) which must be chosen

from a suitable set {α : R+ → A ⊂ R+mesurable} with A compact. Suppose

that these continuous controls provide an instantaneous profit G(x(t))α(t).

The performance of these controls is measured by the reward over the entire

time period, when the discount rate is ρ > 0. The associated continuous

control problem is

(2.1)


ẋ(t) = F (x(t))− α(t),

x(0) = x0, x(t) ≥ 0,

(2.2) max
α∈Λ

J (x0;α) =

+∞∫
0

G (x(t))α(t)e−ρtdt.

The assumptions about the data (linearity of the dynamics and of the profit

function with respect to the control) correspond to a singular problem. This

means that the search of maximum leads to the Euler equation, which is

not a differential one but an algebraic one in this situation. The solution

of the algebraic equation could be interpreted as a state system level which

is recommended to be achieved as quickly as possible and maintained over

time.

Defining the function

(2.3) C(x) = (GF )′ (x)− ρG(x),

the Euler equation associated to the problem is

(2.4) C(x∗) = 0,

and it gives the steady state x∗ of the problem.
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If the steady state verifies the optimality condition:

(2.5) (x∗ − x)C(x) = 0, ∀x = 0,

then, the optimal solution will be the most rapid approach path to this

stationary state x∗ provided that

(2.6) 0 ≤ αmin ≤ α(t) ≤ αmax, ∀t.

This turnpike idea was first used by Samuelson [1949] who showed that an

efficient expanding economy would be in the vicinity of a balanced equilib-

rium path for most of the time. Based on Miele [1962], who used the Green’s

theorem to solve lineal variational problems, Sethi [1977] has proved the

turnpike property for a certain class of problems and Hartl and Feichtinger

[1987], for example, have generalized the results to the non autonomous infi-

nite horizon case. An application of this kind of model to natural resources

extractions can also be seen in Clark [2005].

In this paper, unbounded controls are considered. In the following, we

first present some results of pure impulse control. We then propose to widen

the set of admissible controls to also allow for impulse controls in the mixed

control model.

2.2. Pure impulse control problem.

Impulse controls consist in a sequence of moments, 0 5 τ1 < ... < τi <

τi+1 < . . ., and their corresponding amounts, ξi, i = 1, 2, . . .. In these chosen

time points part of the population is removed. The corresponding amount

of the sequence produces abrupt changes in the evolution of the stock. The

evolution of the system is

(2.7)


ẋ(t) = F (x(t)) , if t 6= τi,

x
(
τ+
i

)
= x

(
τ−i
)
− ξi, if t = τi,

x(0) = x0, x(t) ≥ 0.
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Suppose that impulse controls provide an instantaneous profit Ḡ
(
x(τ−i ), ξi

)
.

The performance of these controls is measured, as before, by the reward over

the entire time period, when the discount rate is ρ > 0, and the associated

pure impulse control problem is:

(2.8) max
{τi,ξi}

J
(
x0;
{
τi, ξ

i
})

=
∑
i∈N

e−ρτi Ḡ
(
x(τ−i ), ξi

)
.

As shown in the literature, this problem has a unique cyclical solution if

(2.9) Ḡ(a, a− c) + Ḡ(b, b− d) < Ḡ(a, a− d) + Ḡ(b, b− c), d 5 c 5 b 5 a.

See Erdlenbruch et al. [2013], for a detailed discussion of the types of solution

to this problem.

As impulse controls are related with continuous "unbounded controls" we

can ask for the limit of optimal profit function of the continuous control

problem presented in section 2.1 when the upper bound of the control tends

to infinite. This limit can be interpreted as the corresponding profit function

for impulse controls. When the initial condition x0 is greater than x∗ MRAP

optimal solution implies that we must harvest using α(t) = αmax. Increasing

αmax, the approach path becomes steeper until describing a discrete harvest-

ing process for an infinitely fast harvest capacity. The corresponding profit

function is derived as follows:

lim
αmax→∞

t1∫
0

G(x(t))αmaxdt, ẋ = F (x)− αmax, x(0) = x0, x(t1) = x1.

Let x(t) = u, ẋdt = du, then

(2.10) lim
αmax→∞

x1∫
x0

G(x(t))
αmax

F (u)− αmax
du =

x0∫
x1

G(u)du.

As shown in Erdlenbruch et al. [2013], this is exactly the case, where

condition 2.9 does not hold and the pure impulse control problem does not

have an exact solution.
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3. The model: the mixed control problem.

In this section, in order to verify Clark’s conjecture we consider that the

two types of harvest are allowed. According to these different types of be-

haviour, the evolution of the system is

(3.1)


ẋ(t) = F (x(t))− α(t), if t 6= τi,

x
(
τ+
i

)
= x

(
τ−i
)
− ξi, if t = τi,

x(0) = x0, x(t) ≥ 0.

Let us call β =
(
α(·),

{
τi, ξ

i
}
i∈N

)
a mixed control which belongs to the

admissible set of mixed controls B. See appendix A for details. The per-

formance of both kind of controls is measured by the total reward over the

entire time period, when the discount rate is ρ > 0,

(3.2) J (x0;β) =

+∞∫
0

G(x(t))α(t)e−ρtdt+
∑
i∈N

e−ρτi Ḡ
(
x
(
τ−i
)
, ξi
)
.

The objective is to maximize profits and then the value function of the

problem is

(3.3) v(x0) = sup
β∈B

J (x0;β).

3.1. The Hamilton-Jacobi-Bellman equation for a mixed control

problem.

We present in this section the way to find an optimal solution of our

mixed control problem. The value function (3.3) of our problem can be

characterized by the Hamilton - Jacobi - Bellman equation, (HJB), associated

to the problem. See Appendix A.

If the profit function of a mixed control is the unique solution of the

associated (HJB) equation then this control is optimal.
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The associated (HJB) equation is

(3.4) min {ρv(x)−H (x,Dv(x)) ; v(x)−Mv(x)} = 0,

where

(3.5) H (x, λ) = sup
a
{G(x)a+ λ [F (x)− a]} ,

and

(3.6) M(w)(x) = sup
ξ∈[0,x]

[
w(x− ξ) + Ḡ(x, ξ)

]
,

for any real, bounded, uniformly continuous function w.

4. Specific functional forms of the dynamics and

the profit functions.

To have the problem analytically tractable, in order to find an optimal

solution or to prove when Clark’s policy is not optimal, we are going to

consider specific functional forms not only for the growth function of the

natural resource but also for the two kinds of profit functions.

The proposed functional forms are common in the literature (see Erdlenbruch

et al. [2013] for an overview). Instantaneous profits describe benefits from

selling the harvest in a competitive market and costs of extraction. The

natural growth function behaves like a logistic function, most often used in

the literature, but has the following two advantages: first, it also allows for

asymmetric growth patterns which can be observed in some natural resource

stocks; second, it is computationally more tractable.

The following function F is considered:

(4.1) F (x) =


rx, if x 5

K

1 + r
,

K − x, if x >
K

1 + r
,
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where r > 0 represents a natural rate of the system and K, its carrying

capacity. The growth of the resource is governed by a concave, piecewise

linear, natural reproduction function, and restricted by a natural carrying

capacity of the environment and then it can be considered 0 ≤ x0 ≤ K.

We consider the following instantaneous profit function

(4.2) G (x(t))α(t) =

[
p− c

x(t)

]
α(t),

where the unit price p is a fixed constant and the cost of extraction per unit

of time depends on x(t) and takes the form
c

x
, with c > 0.

The total discounted profit of the continuous part of the control is therefore

(4.3) J (x0;α) =

+∞∫
0

e−ρt
[
p− c

x(t)

]
α(t)dt.

Inspired by (2.10), we consider the gain of the impulse extraction as

(4.4)

Ḡ
(
x
(
τ−i
)
, ξi
)

=
x(τ−

i )∫
x(τ−

i )−ξi
G(ζ)dζ =

x(τ−
i )∫

x(τ−
i )−ξi

[
p− c̄

ζ

]
dζ =

=

[
pξi − c̄ ln

(
x
(
τ−i
)

x
(
τ−i
)
− ξi

)]
, 0 5 ξ 5 x(τi).

where c̄ > 0 represents the cost of instantaneous extraction, which is also

considered constant. This function is homogeneous, i.e., the jump times do

not appear explicitly. Note that when c̄ = c, we can say that the profit

functions are equivalent in the sens that they produce the same gain.

Therefore, from (4.3) and (4.4), our mixed control problem is:

(4.5)

J (x0;β) =
+∞∫
0

e−ρt
(
p− c

x (t)

)
α(t)dt+

+
∑
i∈N

e−ρτi

[
pξi − c̄ ln

(
x
(
τ−i
)

x
(
τ−i
)
− ξi

)]
.

Remark 1. We suppose that

(4.6) K >
c

p
.
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As we are going to see later if this assumption is not verified, there is no

positive steady state solution.

4.1. The steady state for the pure continuous control problem.

Our idea is to know when the optimal solution of our mixed control prob-

lem is to jump at time t = 0 to the steady state of the continuous control

problem and stay in it forever. We are hence going to identify this steady

state.

Depending on the relationship between the parameters involved in the

model, the Euler equation leads to different cases but all of them with a

unique stable steady state. This uniqueness avoids the need to choose which

is the optimal steady state.

Notation 1. These following values will be used in the analysis:

(4.7)

ν1 = lim
x→ K

1+r

−
(FG)′ (x) = rp,

ν2 = lim
x→ K

1+r

+
(FG)′ (x) =

c (1 + r)2

K
− p,

ν3 = ρG

(
K

r + 1

)
= ρ

(
p− c (1 + r)

K

)
,

ρ1 =
c (1 + r)2 − pK
pK − c (1 + r)

, ρ2 =
rpK

pK − c (1 + r)
.

Proposition 1. Existence and uniqueness of steady state.

<i> If

(4.8)
ν2

p
< r ∧ ρ > ρ2,

then there exists a unique positive steady state

(4.9) x∗ =
c

p

ρ

ρ− r
,
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which verifies

(4.10)
c

p
< x∗ <

K

r + 1
.

<ii> If

(a)-

(4.11)
ν2

p
< r ∧ ρ < ρ1,

or if

(b)-

(4.12) r 5
ν2

p
, ∀ρ > 0,

then there exists a unique positive steady state

(4.13) x∗ =
ρc+

√
ρ2c2 + 4pc (ρ+ 1)K

2p (ρ+ 1)
,

which verifies

(4.14)
K

r + 1
< x∗ <

√
Kc

p
.

See the proof of this proposition in Appendix B.

Remark 2. Thanks to the working assumption (4.6), ρ1 5 ρ2 and then the

< i >-case and the < ii > (a) one are not empty.

Remark 3. It is worth mentioning that under relations among parameters

not considered in the previous proposition, i.e., when

(4.15) ν2 < ν1 ∧ ρ1 5 ρ 5 ρ2,

the Euler equation does not have a solution. From their definitions,

(4.16) ν2 < ν3 < ν1.
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Since ν2 < ν1, it results that ρ1 6= ρ2 and ρ could be between them. In this

case,
K

1 + r
is proposed as a possible "steady state".

5. Resolution of the mixed control problem.

5.1. When an instantaneous jump to the steady state is the optimal

solution.

This section will analyse the case where the profit functions are related in

a particular manner. In our model, this means that c = c̄. This will be a

sufficient condition for the following mixed control to be optimal.

(5.1) β∗ =



(
α(t) = F (x∗) , t > 0;

{
τ1 = 0, ξ1 = x0 − x∗

})
, x0 > x∗,

(α(t) = F (x∗) , t = 0) , x0 = x∗,

(α(t) = F (x∗) , t > τ(x0)) , x0 < x∗,

where τ(x0) is the time that the dynamics needs to reach the x∗ level from

the initial level x0, when x0 < x∗.

Again, the main idea is to achieve the desired level x∗ as quickly as possible

(turnpike property). This mixed control jumps to that level at the initial

instant t = 0, when x0 > x∗. If x0 < x∗, it is necessary to wait for the

system to evolve naturally and to reach the steady state.

Proposition 2. For the optimality problem of maximizing (4.5), following

the dynamics (3.1), with evolution function (4.1), and value function (3.3),

with c = c̄, the mixed control β∗ defined in (5.1) is an optimal one.

See the proof of this proposition in Appendix C.

5.2. When an instantaneous jump to the steady state is not the

optimal solution.
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5.2.1. Case: c̄ > c .

When the continuous extraction cost is lower than the instantaneous one,

the proposed control is not optimal.

The idea is to compare it with another which uses a constant continuous

control to reach the steady state.

Remember that the former control with our functional forms is

(5.2) β∗ =



(
α(t) = rx∗, t > 0;

{
t1 = 0, ξ1 = x0 − x∗

})
, x0 > x∗,

(α(t) = rx∗, t = 0) , x0 = x∗,α(t) =

 0, 0 5 t < τ(x0)

rx∗, t = τ(x0)

 , x0 < x∗,

where τ(x0) is the time that the dynamics needs to reach the x∗ level from

the initial level x0, when x0 < x∗.

A new continuous control which depends on a constant value a > 0 can

be considered:

(5.3) β̂a =



α(t) =

 a, 0 5 t < τ̂(a)

rx∗, t = τ̂(a).

 , x0 > x∗,

(α(t) = rx∗, t = 0) , x0 = x∗, 0, 0 5 t < τ(x0)

rx∗, t = τ(x0)

 , x0 < x∗,

where

τ̂(a) =
1

r
ln

(
a− rx∗

a− rx0

)
,

the time required by the system to descend to level x∗.

Now let us focus on the case where x0 > x∗. With this control (5.3), if

x0 > x∗, the resource does not jump to the steady state. Instead, the stock

descends to x∗ thanks to the constant continuous control equal to a.
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The resulting trajectory is

x(t) =
a

r
+ ert

(
x0 −

a

r

)
.

The benefits obtained with the two previous controls are respectively

(5.4) J (x0;β∗) =

x0∫
x∗

(
p− c̄

ν

)
dν +

τ̂(a)∫
0

(
p− c

x∗

)
rx∗e−ρtdt+

∞∫
τ̂(a)

(
p− c

x∗

)
rx∗e−ρtdt,

(5.5) J
(
x0; β̂

)
=

τ̂(a)∫
0

(
p− c

x(t)

)
ae−ρtdt+

∞∫
τ̂(a)

(
p− c

x∗

)
rx∗e−ρtdt.

Analysing these benefits as functions of the constant a, it can be seen that

there is a level ā that produces the same gain as jumping when starting.

Furthermore, if a higher constant control is used, the gain increases.

Therefore,

∃ā = ā(x0)/ J (x0, β
∗) = J

(
x0, β̂ā

)
∧

J
(
x0, β̂a

)
> J (x0, β

∗) , ∀a > ā.

Below numerical examples are displayed, where h =
ρ

r
indicates the rela-

tionship between parameters r, the natural growth rate of the resource, and

ρ, the discount rate of the model.

Parameter value
K 3200
c 70
p 3/5
ρ 1/2
r 1/4
h 2
x∗ 233, 3̂

Using these values, Figure 1 on page 17 shows always a positive difference

between the profits as a function of the initial value, with different instanta-

neous cost constants. A positive difference indicates that it is better to use

the constant control a to reach the x∗ value than to jump at t = 0 to this

level.
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Figure 1. Difference between the profits, function of the
initial value.

Figure 2 on page 17 shows those positive differences as functions of the

constant continuous control α(t) ≡ a, again with different instantaneous cost

constants. The improvement achieved using a continuous control a grows

with a.

Figure 2. Difference between the profits, function of a.
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We can then state the following result

Proposition 3. When x0 = x∗ and c̄ > c, descending to the level x∗ using a

continuous constant control greater than a∗ is better than using the proposed

control.

5.2.2. Case: c̄ < c.

Let us focus first on the case x(0) = x∗ and compare the gain of an initial

extraction with the gain of using β∗, (5.2).

If x(0) = x∗, following the proposed control β∗, the system will remain

at that level, which is obtained by using the continuous constant control

equal to rx∗. But if a jump of size ξ is produced at t = 0, the system needs

τ (x∗ − ξ) time to reach the level x∗ again.

In order to contrast both situations, we will compare the profits up to

τ (x∗ − ξ), from where both controls produce the same situation, by using

the following functions.

To jump ξ at the beginning and then wait until τ (x∗ − ξ) produces this

partial benefit:

(5.6) J1 (ξ) = pξ − c̄ ln

(
x∗

x∗ − ξ

)
,

meanwhile, maintaining x(t) ≡ x∗ until τ (x∗ − ξ) produces this partial ben-

efit:

(5.7) J2 (ξ) =

(
p− c

ξ

)
x∗

h

(
1−

(
x∗ − ξ
x∗

)h)
.

The steady state level corresponding to a continuous benefit with a cost

c̄ would be

(5.8) x∗c̄ =
c̄h

p (h− 1)
.

Since 0 < c̄ < c, it can be considered this relation:

(5.9) c̄ = sc, 0 < s < 1.
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The benefit of jumping directly to the x∗ level can be compared with

the benefit of jumping to this new x∗c̄ level and then wait until the systems

evolves to x∗, since x∗c̄ < x∗.

It is only necessary to analyse the case where x0 = x∗, for which is the

case of our interest.

A jump to the level x∗c̄ and then wait produces

(5.10)

J1 (x∗ − x∗c̄) = p (x∗ − x∗c̄)− c̄ ln

(
x∗

x∗c̄

)
=

= (c− c̄) h

h− 1
− c̄ ln

(c
c̄

)
=

= (1− s) c h

h− 1
+ cs ln(s).

To maintain x∗ level until the time τ (x∗ − ξ) produces

(5.11)

J2 (x∗ − x∗c̄) =
(
p− c

x∗

) x∗
h

(
1−

(
x∗c̄
x∗

)h)
=

=
(
p− c

x∗

) x∗
h

(
1−

( c̄
c

)h)
=

=
c

(h− 1)h

(
1− sh

)
.

Since2

(5.12)

d

ds

[
h2 (1− s) + s+ h (h− 1) ln(s)− 1 + sh

]
=

= h
[
(h− 1) ln(s) + sh−1 − 1

]
< 0,∀0 < s < 1,

and

(5.13) lim
s→1

[
h2 (1− s) + s+ h (h− 1) ln(s)− 1 + sh

]
= 0,

from (5.11) and (5.10), ∀0 < s < 1, the resulting difference between the two

partial benefits is

(5.14)
J1 (x∗ − x∗c̄)− J2 (x∗ − x∗c̄) =

=
c

h (h− 1)

[
h2 (1− s) + s+ h (h− 1) ln(s)− 1 + sh

]
> 0.

21− x > lnx when 0 < x < 1.
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We can then state that

Proposition 4. When x0 = x∗ and c̄ < c, jumping at the beginning to the

level x∗c̄ ≤ x∗ is better than using the proposed control.

Remark 4. A case to be considered is when c̄ = 0 since x∗c̄ = 0. In this

case, the recommended instantaneous extraction ξ = x0 − x∗c̄ at t = 0 leads

to extinction but it is better than the mixed option β∗ due to the zero instan-

taneous cost.
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6. Conclusion

In this paper, we study a mixed optimal control problem in which both

continuous controls and impulse controls are admissible. The optimal solu-

tion of this problem can be characterized via the Hamilton-Jacobi-Bellman

equation. However, the resolution of this equation can be cumbersome and

in most cases only numerical solutions are possible. This is why we consider

an example with particular functional forms.

Building on the solutions of the pure continuous control and the pure

impulse control problem, we propose a candidate for the optimal solution

of the mixed control problem. We prove that this candidate verifies the

Hamilton-Jacobi-Bellman equation. As conjectured by Clark, jumping to the

steady state and then staying there is one possible optimal solution, but we

show that the profit functions of the continuous control and impulse control

sub-models need to be related in a particular manner to reach such solution.

Although the above results were obtained with particular functional forms,

we think that it will be possible to prove the optimality of Clark’s policy for

general functional forms of growth and profit functions under the condition

that the latter are linked in the way we indicate in this paper. This is our

"conjecture" and it is work in progress.

In a wider sense, our work stresses the importance of the link between

the structure of the model, the model assumptions and the functional forms

of the model. When changing the assumptions on the harvest variable, we

also need to change assumptions on the form of associated benefit and cost

functions. This procedure is not always followed in the literature on resource

economics. Moreover, our analysis also reminds that switching from models

with bounded controls to models with unbounded controls is not trivial.
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Appendix A. General model

The model considered can be posed in the following general form. A

system governed by a differential equation is considered:

(A.1)


dx

ds
(s) = f (x(s), α(s))−

∑
i∈N

δ(s−τi)ξ
i,

x(0) = x0,

where β :=
(
α,
{
τi, ξ

i
}
i∈N

)
can be chosen from a suitable set B and δ(s−τi)

is the Dirac function. This control is assessed by the criterion

(A.2) J (x0;β) =

+∞∫
0

l (x(s), α(s)) e−ρsds+
∑
i∈N

e−ρτi l̄
(
x
(
τ−i
)
, ξi
)
.

The function x(s) represents the evolution of the system starting at x0,

when it is subjected to continuous control α, and to instantaneous control of

size ξi at times τi. Both controls produce benefits, respectively represented

by l and l̄.

A particular case of what it is presented in (A.1)-(A.2) is considered in

Bardi and Capuzzo-Dolcetta [1997]. This problem generalizes the one pre-

sented in that book, since here the impulse controls and also the impulse

profit function both depend on the state of the system.

As usual, the problem is to find (if any) a control that maximizes the

criterion.

The value function of the problem is

(A.3) v(x) = sup
β∈B

J (x0;β).

The following hypotheses are assumed:

<S1> x(s), x0 ∈ Rn+, ∀s = 0.

<S2> Let β =
(
α(s), s = 0,

{
τi, ξ

i
}
i∈N

)
∈ B a mixed control.

<S3> ξi ∈ K (x(τi)) ⊂ Rn+, K : Rn+ ⇒ Rm is a lower semicontinuous

compact multivalued map.
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<S4> τ1 = 0 and ∃ t∗ > 0 such that τi+1 = τi + t∗, ∀i ∈ N.

<S5> α : R+ → A ⊂ Rm is measurable and A compact.

<S6> ∃ N > 0 such that |f (x, a)| 5 N , ∀x ∈ Rn, ∀a ∈ A, f is continuous

and f(·, a) is one-sided Lipschitz.

<S7> ∃M > 0 such that |l (x, a)| 5M , ∀x ∈ Rn, ∀a ∈ A and l(·, a) admits

a global modulus of continuity, ωl, i.e.,

|l (x, a)− l (y, a)| 5 ωl (|x− y|) , ∀a ∈ A.

<S8> ∃ C > 0 such that sup
ξ∈K(x)

∣∣l̄(x, ξ)∣∣ 5 C, ∀x ∈ Rn+ and l̄ admits a

modulus of continuity ωc, i.e.,

∣∣l̄ (x, ξ)− l̄ (y, ν)
∣∣ 5 ωc (‖(x, ξ)− (y, ν)‖) , ξ ∈ K(x), ν ∈ K(y).

Following the guidelines used in the books [Bardi and Capuzzo-Dolcetta,

1997, Barles, 1994] the value function of this problem can be represented as

the solution of a Bellman type equation (cf. Alvarez et al. [preprint]). More

precisely,

Theorem 1.

v defined in (A.3) is the unique viscosity solution of

(A.4) min {ρ v(x)−H (x,Dv(x)) ; v(x)−Mv(x)} = 0,

where

(A.5) H (x, λ) = sup
a∈A
{l(x, a) + λ f(x, a)} ,

and

(A.6) M(w)(x) = sup
ξ∈K(x)

[
w(x− ξ) + l̄(x, ξ)

]
, w ∈ BUC (Rn) .
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Appendix B. Steady state. Proof of Proposition 1

Proof. (i)- Working in 0 < x <
K

1 + r
and rewriting the Euler equation

(2.4),

ρ
(
p− c

x

)
=
(
p− c

x

)
r +

c

x2
rx.

When ρ 6= r,

x∗ =
cρ

p(ρ− r)
.

Then x∗ will be the unique positive solution of the Euler equation in

this case iff ρ > r. From (4.7), it results

(B.1) ν2 < ν1 < ν3.

Since ρ > ρ2,

(B.2) ρ >
r
K

1 + r
K

1 + r
− c

p

.

Besides, since ν2 < ν1,

(B.3)
K

1 + r
− c

p
> 0.

From (B.2) and (B.3), ρ > r. Therefore

(B.4) x∗ > 0.

Moreover,

(B.5) D [ρG] (x) =
ρc

x2
> 0, ∀x⇒ ρG is increasing.

From (B.5), it is verified

(B.6)
c

p
< x∗ <

K

r + 1
.

Verifying the turnpike optimality:
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C(x) = p(r − ρ) +
ρc

x
,

(x∗1 − x)
[
p(r − ρ) +

ρc

x

]
= 0, ∀x > 0.

Then, this x∗ steady state verifies the condition (2.5).

(ii)- Working in
K

1 + r
< x < K, rewriting (2.4),

ρ
(
p− c

x

)
=
(
p− c

x

)
(−1) +

c

x2
(K − x) ,

p (ρ+ 1)x2 − ρcx−Kc = 0.

Then,

(B.7) x∗ =
ρc+

√
ρ2c2 + 4pc (ρ+ 1)K

2p (ρ+ 1)
.

This x∗ will be the unique positive solution of the Euler equation in

this case. When the parameters verify the conditions (4.11), from

(4.7), it results

(B.8) ν3 < ν2 < ν1.

Since ν3 < ν2, from (B.8),

(B.9) x∗ >
K

r + 1
.

When the parameters verify the conditions (4.12), from (4.7), with

ρ > 0, it results

(B.10) ν3 5 0.

Since ν3 5 0, from (B.10),

(B.11) x∗ >
K

r + 1
.
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Moreover, working with x >
K

r + 1
,

(B.12) D [FG] (x) =
Kc

x2
− p = 0⇔ x =

√
Kc

p
.

Since D [FG] is decreasing, from (B.12), a positive steady state x∗

will verified

(B.13) x∗ <

√
Kc

p
.

Verifying the turnpike optimality:

C(x) =
( c
x
− p
)

(ρ+ 1) + c
K − x
x2

=

=
ρc

x
+
cK

x2
− p (ρ+ 1) .

C ′(x) = −cρx+ 2K

x3
< 0.

Therefore,

(x∗ − x)C(x) = 0, ∀x = 0.

When the parameters of the model verify item (a) or item (b), the

steady state solution verifies the condition (2.5).

�

Appendix C. Mixed optimal control. Proof of Proposition 2

Proof. Different cases will be considered, depending on the relationship be-

tween parameters.

*(A)* - First, consider the case where ν2 < ν1 and ρ > ρ2, as in (4.8).

Then, it results

x∗ = x∗1 =
c

p

ρ

ρ− r
.
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Rewriting (5.1),

(C.1) β∗ =


(
α(t) = rx∗, t > 0;

{
τ1 = 0, ξ1 = x0 − x∗

})
, x0 > x∗,

(α(t) = rx∗, t > τ(x0)) , x0 5 x∗,

The profit function corresponding to the proposed control (C.1)

is

(C.2)

J (x0;β∗) =


x0∫
x∗1

(
p− c̄

ν

)
dν) +

+∞∫
0

(
p− c

x∗1

)
rx∗1e

−ρtdt, x0 > x∗1,

+∞∫
τ(x0)

(
p− c

x∗1

)
rx∗1e

−ρtdt, x0 5 x∗1.

In this case, the time τ(x0) is

(C.3) τ(x0) =
1

r
ln

(
x∗1
x0

)
, x0 5 x

∗
1.

Then, rewriting with h =
ρ

r
,

(C.4) J (x0;β∗) =


p (x0 − x∗1)− c̄ ln

(
x0

x∗1

)
+

(
p− c

x∗1

)
x∗1
h
, x0 > x∗1(

p− c

x∗1

)
xh0
h

(x∗1)1−h , x0 5 x∗1.

The idea is to verify that the benefit function (C.2) related to

the proposed control (5.1) satisfies the Bellman equation (3.4).

The Hamiltonian is

(C.5)

H(x, λ) = sup
a
{l(x, a) + λf(x, a)} =

= sup
a=0

{[
p− c

x

]
a+ λ (rx− a)

}
=

= sup
a=0

{
λrx+

[
p− c

x
− λ

]
a
}

=

=


λrx, p− c

x
− λ 5 0,

+∞, p− c

x
− λ > 0.
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Analysing the conditions in (C.5),

(C.6) p− c

x0
−DJ (x0;β∗) =


p− c

x0
− p+

c̄

x0
, x0 > x∗1,

p− c

x0
−
[
p− c

x∗1

](
x0

x∗1

)h−1

, x0 < x∗1.

Rewriting (C.6),

(C.7) p− c

x0
5

[
p− c

x∗1

](
x0

x∗1

)h−1

⇔
(
p− c

x0

)
x1−h

0 5

[
p− c

x∗1

]
(x∗1)1−h .

Since
(
p− c

x

)
x1−h is increasing in x, the previous inequality is

verified.

Therefore,

(C.8) H (x0, DJ (x0;β∗)) = DJ (x0;β∗) r x0, x0 = 0,

taking into account the assumption that c̄ = c.

Remembering the definition, from (3.6),

Mu(x) = sup
ξ∈K(x)

[
u (x− ξ) + l̄ (x, ξ)

]
=

= sup
05ξ5x

[
u (x− ξ) + pξ − c̄ ln

(
x

x− ξ

)]
.

The functional M evaluated at the benefit function of using

the β∗ control is

MJ (x0;β∗) =

= sup
05ξ5x0


p (x0 − x∗1) +

[
p− c

x∗1

]
x∗1
h
− c̄ ln

(
x0
x∗1

)
, x0 − x∗1 = ξ,[

p− c

x∗1

]
(x∗1)1−h

h
(x0 − ξ)h + pξ + c̄ ln

(
x0 − ξ
x0

)
, x0 − x∗1 < ξ.

When x0 < x∗1, x0 − x∗1 < 0 and it is only considered 0 5 ξ 5 x0.

sup
05ξ5x0

[
p− c

x∗1

]
(x∗1)1−h

h
(x0 − ξ)h + pξ + c̄ ln

(
x0 − ξ
x0

)
=

=

[
p− c

x∗1

]
x∗1
h

(
x0

x∗1

)h
. (ξ = 0)
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Since c = c̄,

d

dξ
(·) = p−

[
p− c

x∗1

](
x0 − ξ
x∗1

)h−1

− c̄

x0 − ξ
< 0.

When x0 > x∗1, x0 − x∗1 > 0 so 0 5 ξ 5 x0 − x∗1 and also

x0 − x∗1 5 ξ 5 x0.

Then,

(C.9)

MJ (x0;β∗) =


[
p− c

x∗1

]
x∗1
h

(
x0

x∗1

)h
, x0 < x∗1,

p (x0 − x∗1) +

[
p− c

x∗1

]
x∗1
h
− c̄ ln

(
x0

x∗1

)
, x0 > x∗1.

Rewriting,

(C.10) MJ (x0;β∗) =


c

h(h− 1)

(
x0

x∗1

)h
, x0 < x∗1,

p (x0 − x∗1) +
c

h(h− 1)
− c̄ ln

(
x0

x∗1

)
, x0 > x∗1.

Remembering the Bellman equation, (3.4), from (C.8) and (C.4),

the resulting left part is

ρJ (x0;β∗)−DJ (x0;β∗) r x0 =

= r [hJβ∗(x0)− x0DJβ∗(x0)] ,

∀x0 = 0.

Now,

hJ (x0;β∗)− x0DJ (x0;β∗) =

=


hp (x0 − x∗1)− hc̄ ln

x0

x∗1

+

[
p− c

x∗1

]
x∗1 − px0 + c̄, x0 > x∗1,[

p− c

x∗1

]
x∗1

(
x0

x∗1

)h
−
[
p− c

x∗1

]
(x∗1)1−h xh0 , x0 < x∗1.

=


p (h− 1) (x0 − x∗1) + c̄− hc̄ ln

(
x0

x∗1

)
− c, x0 > x∗1,

0, x0 < x∗1.
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It results

p (h− 1) (x0 − x∗1)− hc ln

(
x0

x∗1

)
= 0⇔ x0 − x∗1 = x∗1ln

(
x0

x∗1

)
.

But
x0

x∗1
=

[
ln

(
x0

x∗1

)
+ 1

]
, ∀x0

x∗1
= 1.

Therefore,

(C.11) ρ J (x0;β∗)−DJ (x0;β∗) r x0 = 0.

The right part of (3.4), from (C.10) and (C.4), is

(C.12) J (x0;β∗)−MJ (x0;β∗) = 0, ∀x0 = 0.

Therefore, from (C.11) and (C.12), Jβ∗(x0) verifies the Bellman

equation (3.4) corresponding to this problem.

The proposed control is an optimal one since its profit function

(C.2) is the solution of (3.4) working within the constraints of this

case.

*(B)* - When the parameters verify the relations of (4.15), ν2 < ν1 ∧

ρ1 5 ρ 5 ρ2, then

(C.13) x∗ = x∗2 =
K

1 + r
.

As in the previous case, the mixed control (5.1) is the one

proposed.

Following the ideas exposed in the previous case, it can be seen

that this control results optimal for the problem.

*(C)* - Working with parameters that verify the conditions of (4.11), the

steady state is

(C.14) x∗ = x∗3 =
ρc+

√
ρ2c2 + 4pc (ρ+ 1)K

2p (ρ+ 1)
.
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If the initial level is below x∗3, the system needs a time to reach

that level by itself. Let τ3 be that time:

(C.15) τ3(x0) =


ln

(
K − x0
K − x∗3

)
,

K

r + 1
5 x0 5 x∗3,

ln

(
K r
r+1

K − x∗3

)
+

1

r
ln

(
K

x0 (1 + r)

)
, 0 < x0 <

K

1 + r
.

For this case, rewriting (5.1), the proposed control is β3:

(C.16) β3 =



α(t) = K − x∗3, t > 0;
{
τ1 = 0, ξ1 = x0 − x∗3

}
, x0 > x∗3

α(t) = K − x∗3, t = 0, x0 = x∗3,

α(t) =


0, 0 5 t < τ3 (x0) ,

K − x∗3, t = τ3 (x0) ,

0 < x0 < x∗3.

*(D)* - Working with parameters that verify the conditions of (4.12), the

steady state x∗4 is the same as the previous one which was calcu-

lated on (C.14).

If the initial level is below x∗4, the system needs τ3 to reach that

level by itself as was shown in (C.15).

For this case, the proposed control β∗ takes the form of β4:

(C.17) β4 =



α(t) = K − x∗4, t > 0;
{
τ1 = 0, ξ1 = x0 − x∗4

}
, x0 > x∗4

α(t) = K − x∗4, t = 0, x0 = x∗4,

α(t) =


0, 0 5 t < τ3 (x0) ,

K − x∗4, t = τ3 (x0) ,

0 < x0 < x∗4.

�
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