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Abstract

Individual adaptation measures are an important tool for households to reduce

the negative consequences of �oods. Although people's motivations to adopt such

measures are widely studied in the literature, the di�usion of adaptations within a

given population is less well described. In this paper, we build a dynamic agent based

model which simulates the adoption of individual adaptation measures and enables

evaluation of the e�ciency of di�erent communication policies. We run our model

using an original dataset, based on a survey in France. We test the importance of

di�erent parameters of our model by implementing a global sensitivity analysis. We

then compare the ranking and performance of di�erent communication policies under

di�erent model settings. We show that in all settings, targeted policies that deal with

both risk and coping possibilities, perform best in supporting individual adaptation.

Moreover, we show that di�erent dynamic parameters are of particular importance,

namely the delay between the motivation to act and the implementation of the measure

and the time during which households stick to a given adaptation measure.

Keywords: �ood risk, adaptation, agent based model, protection motivation theory, social
network, smallworld, risk communication, �ood prevention, vulnerability.

1 Introduction

Floods cause major damage and disruptions worldwide. In Europe, between 1980 and 2011,
�oods a�ected more than 5.5 million people and resulted in more than 2 500 fatalities and
over 90 billion euros in economic losses (EEA, 2012). In France, one resident out of four
and one job out of three are exposed to �ood risk. Between 1988 and 2013, �oods were
responsible for around 30 billion euros of damage in France (MEDDE, 2012a,b).
Many di�erent policies exist to address this risk: structural measures (dykes, dams) or
non-structural measures (�ood retention basins) may be established with the aim of re-
ducing hazard. National compensation schemes and private insurance policies can be used
to help people to recover after a crisis and hence increase resilience. Zoning policies may
be designed with the aim of reducing vulnerability (Erdlenbruch et al., 2009), e.g. by
enforcing building restrictions or the adaptation of buildings in risky areas. Among the
vulnerability reducing actions, some reduce the negative consequences of �oods at the in-
dividual level. Households can choose, e.g. to use water-resistant materials in their homes,
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or to store valuables upstairs. Following Blanco et al. (2017), we term such actions "in-
dividual adaptation measures" as opposed to collective mitigation measures, which reduce
the probability of group loss.
Risks are reduced more e�ectively if adaptations at di�erent scales are combined (Adger
et al., 2005, Filatova, 2014). This may be the case when governments set up information
policies or price signals for private stakeholders or when they support market based instru-
ments (Filatova, 2014). In this paper, we focus on how individual adaptation measures
can be promoted by public communication policies. To situate our approach with respect
to the risk governance model (Aven and Renn, 2010, IRGC, 2005), we assume that risk
appraisal and concern assessment as well as risk characterisation and tolerability assess-
ment are carried out at the individual level. Di�erent communication policies representing
di�erent regulatory styles are implemented by the risk management institutions, e.g. local
water basin manager or the national ministry of the environment.
Some individual adaptation measures have been shown to be particularly cost e�cient,
reducing the ratio of total damage to total building values by nearly half (see Kreibich
et al. (2005) for a study in Germany, Poussin et al. (2015) for a study in France, and
Botzen et al. (2009) for a study in the Netherlands). Many other advantages of individual
adaptation are discussed in the literature, among which the fact that they may help to
maintain awareness about �ood risk among people (Richert et al., 2017).
Although the reasons to adopt individual adaptation measures are relatively well covered in
the literature, little is known about the dynamic aspects of adaptation: how long do people
stick to a chosen measure? Once people have the intention to adapt, how quickly do they
implement the measure? At a more aggregated level: how rapidly do adaptation measures
expand within a population? Our main research question in this paper is thus: how
important are the dynamic aspects of the adoption of individual adaptation measures and
how do they in�uence the predictions about the e�ectiveness of public policies supporting
individual adaptation? To answer this question, we built an empirically based dynamic
simulation model of the adoption of individual adaptation measures.
To study the driving forces of the adoption of individual adaptation measures, many studies
have used the protection motivation theory (PMT) because it focuses on two complemen-
tary elements of risk perception, threat appraisal and coping appraisal. The theory was
proposed by Rogers (1975) and originally applied in the health domain (see Milne et al.
(2000) for a metanalysis). Following Grothmann and Reusswig (2006), the framework
was extended to explain the adoption of individual adaptation measures against �oods.
Authors in various countries have used this approach, e.g. in Germany (Bubeck et al.,
2013, Grothmann and Reusswig, 2006), Great Britan (Glenk and Fischer, 2010), Vietnam
(Reynaud et al., 2013), and France (Poussin et al., 2014, Richert et al., 2017). Similarly,
this approach has been used to explain the adoption of individual adaptation in the face of
drought events (van Duinen et al., 2014, van Duinen et al., 2015). This is the framework
we use in the following.
Several studies have drawn attention to the fact that risk perceptions and adaption be-
haviour should be modelled in a dynamic setting (Bubeck et al., 2012a,b). For example,
risk perception satisfactorily explains the intention to adopt individual adaptation mea-
sures but not necessarily the presence of such measures, because there could be a feedback
e�ect, which decreases risk perceptions once the measures are adopted (Bubeck et al.,
2012a, Richert et al., 2017). On the other hand, households may decide to abandon mea-
sures if no �ood occurs for a while, as the experience of �ood events is an important element
in explaining past implementation of individual adaptation measures (Osberghaus, 2017).
Despite these results, longitudinal data on adaptation behaviour are scarce and time con-
suming to collect (Osberghaus, 2017). One way to investigate the dynamics of adaptation
despite this missing data is to use simulation models, such as agent based models.
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Agent based models (ABM) make it possible to test hypotheses concerning the relationship
between individual behaviours and macroscopic regularities (Epstein and Axtell, 1996),
for instance the rate of adaptation in a population as the outcome of many individual
adaptation decisions. ABMs can also be used to explore non equilibrium dynamics (Epstein
and Axtell, 1996) and to test the importance of sets of parameters for which empirical
data are missing. It is thus an interesting tool to test changes in rates of adaptation in
the population as a function of di�erent dynamic parameters of individual adaptation.
Finally, ABMs can be easily combined with spatial models and can consequently represent
the networks and interactions among individuals which are crucial in social systems. In
this paper, we consider a typical social network, exhibiting the small-world characteristics,
which have been shown to exist in many social interactions (Watts and Strogatz, 1998).
Agent based models have already been applied to �ood risk management. Dawson et al.
(2011) for example built a �ood-incidence model which mimics the short-term reaction of
individuals during a �ood, applied to the coastal town of Towyn, UK. Filatova (2015),
Filatova et al. (2011) and Dubbelboer et al. (2017) modelled the long-term e�ect of �ood
risk on the housing market. Other studies showed the in�uence of di�erent behavioural
assumptions on changes in land-use or in investment decisions: for example, Filatova
et al. (2011) show how a skewed risk perception distribution leads to more high valued
development in risky coastal zones. Haer et al. (2016a) investigated three economic decision
models for investments in loss-reducing measures in the context of river �ooding. Finally,
Haer et al. (2016b) and van Duinen et al. (2016) combined protection motivation theory
and agent based models of adaptation di�usion, applied to drought risks in van Duinen
et al. (2016) and �ood risk in Haer et al. (2016b).
The model built by Haer et al. (2016b) is closest to ours. They tested the e�ectiveness of
four di�erent �ood-communication policies in promoting individual adaptation measures
in the Dutch Rotterdam-Rijnmond area. Risk communication can be top down or people
centered, i.e. tailored to the speci�c needs of an individual. One example of top down
policies is when governments communicate about risk zoning. One example of people
centered policies is when experts advise homeowners how to make their home �ood-proof.
The information provided in these communication campaigns can deal with the occurrence
and consequences of �ood risk or it can describe actions and measures that people can use
to cope with the risk. One could for example imagine a photo exhibition showing past
events to describe the risk and advise on how to behave in the case of a crisis to describe
how to cope with di�erent types of risk. Haer et al. (2016b) show that polices perform
best if the information is people centered and if it deals with both the risk and coping with
risk.
Our model di�ers from their model in three main ways: �rst, whereas Haer et al. (2016b)
construct an arti�cial society based on data found in Bubeck et al. (2013), we use our
own dataset and only model households on which we have detailed information. Second,
Haer et al. (2016b) construct a social network based on the characteristics of networks
in the Netherlands, we construct a spatially explicit small-world network on the basis of
our data. Third, and most importantly, we adapt our model to be able to represent two
important dynamic features: the average delay of implementation of the measure and the
average adaptation duration. We analyse the importance of the di�erent parameters of our
model by comparing it to a similar aggregate model and by performing a global sensitivity
analysis. We then investigate the impacts of the four communication policies in this model,
considering di�erent dynamic adaptation con�gurations. In particular, we show that the
delay of implementation is the most in�uential parameter, next to the duration of individual
adaptation measures.
The paper is organized as follows: In section 2, we describe the survey and the empirical
data we use. In section 3, we present our empirical decision model: we �rst describe how
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protection motivation can be represented as the probability to adopt adaptation measures
and we then present the results of estimating this probability from the underlying dataset.
In section 4, we describe the model of adaptation di�usion, with a special emphasis on
the construction of the social network and the dynamic parameters. We also compare the
individual based model to an aggregate model to gain some additional insights into the
dynamics modelled and to demonstrate the interest of individual-based modelling in this
speci�c case. In section 5, we present the experimental plan of our simulations. In section
6, we present the results: �rst we assess the importance of di�erent parameters of our
model, by comparing it to the aggregate model and by implementing a sensitivity analysis.
We then observe how di�erent model con�gurations a�ect the ranking and e�ciency of
the four communication policies. This allows us to represent the di�usion of individual
adaptation measures under di�erent dynamic settings. Finally, in section 7 we present our
conclusions. Figure 1 summarizes the main steps of our work.

Empirical decision model

Model of adaptation diffusion

Simulations

Material Results

Survey EconometricP
model

EstimationPofP
oddsPratios

DatasetPfromP
thePliterature

Communi-
cationP
policyP

scenariosPP

initialP
states

Scenarios
withP

differentP
parameterP

valuesP

PPPPPdynamicPvariables

D
a
t
a

Individual
basedP
modelP

Aggregate
modelP

N
e
t
w
o
r
k
P

P
M
T

ComparisonPofP
individual-basedP

and
aggregatePmodel.

SensitivityP
analysis

ImpactPofPmodel
configurationsPonP

rankingPofP
communication

policies.

ImportancePof:PP
-PnetworkP

P-PdynamicPvariables
-PdatasetPonPPMT
andPoddsPratios

P

Figure 1: Graphic organizer of the underlying work.

2 Material

2.1 Survey and geographical sampling

Our data is based on a survey of 331 households in the Aude and the Var departments
in the South of France, conducted in summer 2015. The distribution of the surveyed
households and their location in the �oodplains are shown in the maps in Figure 2. All
the sampled municipalities were hit by important �oods in the years preceding the survey:
in the Var department in 2010, 2011, 2013 and 2014, and in the Aude department in 1999
and 2014. Some municipalities are �ooded regularly while others were hit only by major
�oods, namely in the Aude departement in 1999 and in the Var department in 2010. The
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majority of the respondents live in �ood-prone areas: 80% of the respondents had already
experienced a �ood, as de�ned in the survey by "the �ood reached your street". About
half of the respondents live in big municipalities, the other half in rural municipalities. In
the survey, we also collected information on location of the households in the �ood prone
areas, the characteristics of their homes, their risk perceptions and their behaviour during
a �ood and in preparation of future �oods. For more details on the survey, see Richert
et al. (2017).

0 10 20  km

Main rivers
Flood area
Interviewed households
Surveyed towns

Aude department
Var department
Other departments

0 10 20  km

NN

Mediterranean SeaMediterranean Sea

Figure 2: Map of sampled municipalities and surveyed households in relation to �ood prone
areas in the South of France, Aude department on the left, Var department on the right.

2.2 Data

2.2.1 Adaptation measures

Eleven main adaptation measures were identi�ed in the survey, see Table 1. For the
purpose of this study, we distinguish permanent from non-permanent measures. Permanent
measures are features of the structure of homes, such as raised ground �oors or raised
crawl spaces, also termed structural measures. Non-permanent measures may either be
temporary or reversible.

Permanent measures Reversible measures Temporary measures

Raised ground �oor, raised
crawl space

Use of water resistant
materials (for the �oor
and/or the walls)

Slot-in �ood barriers

Opening on the roof to
facilitate evacuation

All main rooms (kitchen,
bedrooms, living-room)
located upstairs

Pumps

Watertight doors and
windows

Electrical wiring and systems
and/or boiler installed higher
up on the walls

Valuables stored upstairs

Measures to improve water
�ow

Sewer non-return valves

Table 1: Permanent and non-permanent (i.e. reversible and temporary) measures revealed
during the survey.
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Temporary measures are those that depend on the behaviour of the household: using slot-
in �ood barriers or pumps, or storing valuables upstairs. Reversible measures imply some
installation but have to be maintained or may be easily removable, such as having all
main rooms upstairs, or installing electrical wiring and boilers further up on the walls. As
revealed by some additional qualitative surveys we led, temporary measures can disappear
after a few years, whereas reversible measures may last until the renewal of most of the
installations, about 10 years.

2.2.2 Household attributes

Sociodemographic household attributes Some general sociodemographic character-
istics of the household sample are summarized in Table 2. The �nal sample used is based
on 272 individuals and is representative of the municipal population in terms of age and
gender. It is also balanced in terms of geographical distribution and size of municipalities.
Finally, it is su�ciently diversi�ed in terms of education level and homeownership. For
more details see Richert et al. (2017).

Variable Category
Sample

distribution

Gender
Male 46.7%
Female 53.3%

Age

<30 17.6%
30-44 21.3%
45-59 25.0%
60-74 26.5%
>74 9.6%

Education level
Less than a high school diploma 51.1%

High school diploma or higher diploma 48.9%

Ownership of the home
Home owners 63.2%

Others 36.8%

Size of the municipality
of residence

Resident of a municipality with less than
10,000 inhabitants

52.6%

Resident of a municipality with more than
10,000 inhabitants

47.4%

Department
Aude 49.3%
Var 50.7%

N=272

Table 2: Distribution of sociodemographic variables in the sample.

Household attributes related to the protection motivation theory The attribute
variables used in our model are listed in Table 3, see also Richert et al. (2017) for a more
detailed description. All attitude variables were rescaled between 1 and 5. The variable,
"Well-being in municipality" which is measured as "Do you feel well in your municipality?
("Not well at all-1", "Not really well-2", "Neither well nor not well-3", "Well-4", "Very well-
5") is included as a proxy for "perceived bene�ts of living in a �ood prone area". Indeed,
in the protection motivation theory, perceived bene�ts can temper the threat appraisal.
The variable "perceived costs" is measured through the proxy: "For each measure listed,
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are its use and its maintenance constraining?" ("Not at all-1" "Not really constraining-2"
"Don't know-3" "Yes a little constraining-4" "Yes, very constraining").

Variable
Mean

(Std dev.)
Question Scale

Perceived
probability

3.39
(1.12)

"How do you assess the following scenario:
'your municipality will be �ooded at least

once in the next 10 years'?"

From 1 ("impossible")
to 5 ("certain")

Perceived
consequences

3.47
(1.40)

"In the case of �ooding, how do you assess
the following scenario: 'the water will reach

your street'? "

From 1 ("impossible")
to 5 ("certain")

Perceived
self e�cacy

2.50
(1.10)

"To what extent do you agree with the
following statement: 'I do not believe that I
am able to avoid the consequences of �oods
in my household. I have no control over such

events.'?"

From 1
("strongly agree")

to 5
("strongly disagree")

Perceived
e�cacy of
measure

3.57
(0.86)

"For each measure listed below, how
e�ective do you think it will be in preventing

the negative consequences of �oods?"

From 1
("not at all e�ective")

to 5
("very e�ective")

Past �ood
experience
appraisal

2.59
(1.40)

"How do you assess the seriousness of the
consequences of the reference �ood for your

household?"

From 1 ("not or for
people who have not
experienced a �ood)
to 5 ("extremely

serious")

Perceived
bene�ts

4.30
(0.79)

"How well do you feel in your municipality?"
From 1 ("not well at
all") to 5 ("very

well")

Perceived
costs

2.94
(1.35)

"For each measure listed its use and its
maintenance are they constraining?"

From 1 ("not at all")
to 5 ("extremely

serious")

N=272

Table 3: Summary of PMT data: variable name corresponding to household attribute,
mean value and standard deviation in the sample, question used in the questionnaire,
possible values for each attribute.

Social network and adaptation status For the social network variable, we created a
variable that counts the number of adapted neighbours. We distributed the interviewed
individuals according to their geographic location and created a directed network of the 15
nearest neighbours (see section 4). Considering a group of 1 to 20 people when deciding
on �ood adpation measures seemed a good assumption to us (see also Haer et al. (2016b)).
The Social Network variable varies from 1 ("no adapted neighbour") to 5 ("only adapted
neighbours") with a mean of 2.54 and standard deviation of 0.82.
To de�ne the initial adaptation status of our network, we used the following information: In
our sample of 272 individuals, 183 individuals have at least one non-permanent adaptation
measure in their home. Hence 67% of the households are adapted in some way. However,
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some of these adaptations may have already been present when the family moved in.
Indeed, only 66 individuals, or 24%, state that they implemented the measure themselves.
In the following, we consider that the initial adaptation status is 67%. We anticipate that
adaptation trajectories will decrease in the beginning, as some of the households had not
chosen to implement the adaptation measures and may not be motivated to do so.

3 The empirical decision model

3.1 Explaining protection motivation in an econometric model

The general setup of the model The empirical decision model is based on the pro-
tection motivation theory by Rogers (1975). Households' or individuals' adaptation be-
haviour1 is explained by several variables, as shown in Figure 3 (blue rectangles from top
to bottom): First, individuals may evaluate the experience of past �ood events di�erently.
Secondly, they perceive the threat of �ooding di�erently: the probability and consequences
of future events as well as potential bene�ts of living in risky areas. Thirdly, they appraise
their coping capacity di�erently: the e�cacy of adaptation measures and their own e�-
cacy when adapting, as well as the perceived costs of implementation. Finally, they are
part of social networks in which varying numbers of other members have adapted, which
may in�uence their own behaviour. The impact of each variable on protection motivation
can be positive (represented by green arrows, with a plus sign) which means the higher
the value of the variable, the greater the response variable, or negative (represented by
red arrows, with a negative sign), which means the higher the value of the variable, the
lower the response variable. For example: the greater the perception of the probability
of occurrence of a �ood, the greater the motivation to act. Next to the protection moti-
vation, these variables can also explain non-protective responses, such as wishful thinking
and denial. For example, a high coping appraisal will reduce non-protective responses
which in turn increases protection motivation. Here we represent the most common links
described in the literature (Richert et al., 2017). To keep the graph intelligible, we do not
include feedback e�ects, which may exist: e.g. the adoption of adaptation measures may
in turn lead to lower threat appraisal, see (Richert et al., 2017). Each of these variables, or
attributes, is measured through attribute levels (see Table 3), which can be interpreted as
individual attitudes. Protection motivation may be transformed into the implementation
of adaptation measures. However, actual barriers, such as high implementation costs or
administrative problems, can impede the action.

1Here and in the following, we use either "individual" or "household" to refer to the data we collected

on individuals concerning their household.
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Figure 3: General representation of the impact of households' attributes on households'
behaviour according to the Protection Motivation Theory, assuming the presence of com-
munication policies.

The econometric model The motivation to take protective responses can be measured
econometrically by estimating the probability to adopt adaptation measures as a func-
tion of the explanatory variables. The probability to adopt adaptation measures for each
household, Ph can be written as a function of the household's attribute levels and the odds
ratios for implementation:

Ph =
CΠI

i=1or
ai,h
i

CΠI
i=1or

ai,h
i + 1

, (1)

where i is the attributes, I is the full set of attributes, ori is the odds ratio for each attribute
as computed in a logistic regression, C is the constant of the logistic regression and ai,h
are each attribute's level. Attribute levels are household speci�c and can be interpreted
as household's attitudes. The odds for some event expresses the likelihood that the event
will take place divided by the likelihood that it will not. In the logistic regression, the
odds ratio indicates the change in odds of the explanatory variable for a unit change in
the dependent variable.2

Communication policies We also consider the possibility of communication policies
(see left-hand side of Figure 3). Following Haer et al. (2016b), communication strategies
on �ood risk can take four forms: top down policies on risk ("td-r"), top down policies
on risk and coping ("td-rc"), people centered policies on risk ("pc-r") and people centered
policies on risk and coping ("pc-rc"). Top down policies on risk ("td-r") increase the
attribute level of both perceived probability and perceived consequences by two units each,
for all individuals who are reached by the policy. Top down policies on risk and coping
(td-rc) increase the attribute level of four variables: perceived probability and perceived

2If more than two levels are possible for one variable, the odds are computed for passing from one level

to the next.
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consequences as well as the perceived e�cacy of the measure and perceived self-e�cacy,
by one unit each. Like in Haer et al. (2016b), we assume that the magnitude of change in
attitude is the same for the two communication strategies. Only the way in which attitude
is changed di�ers. This makes the policies comparable. People centered communication
policies function in a similar way, increasing the attribute levels of either risk or risk and
coping variables by at most 4 points. However, they �rst target the variables which have
the lowest attribute levels and hence the most need to be increased. If an individual
already has the maximum possible attribute level, the policy has no additional impact. All
households have a combined probability p to be targeted by a communication policy and
to take into the information obtained into consideration. Following Haer et al. (2016b),
we chose p = 0.16.

3.2 Estimation of odds ratios describing the probability to adopt

We run a logistic regression of an individual's intention to implement non-permanent adap-
tation measures on the household's attributes listed in Table 3. Table 4 summarizes the
regression results and lists the corresponding odds ratios, with 95% con�dence intervals.3

Table 4: Logistic regression explaining planned non-permanent measures with variables
from the Protection Motivation Theory and the social network variable.

Logit estimation Odds ratio

Variable 95% con�dence intervals

Coe�cient Std Err. Lower Odds ratio Upper

Perceived probability 0.07 (0.17 ) (0.78) 1.08 (1.49)

Perceived consequences 0.61*** (0.17 ) (1.32) 1.83 (2.54)

Perceived self-e�cacy 0.22 (0.16 ) (0.92) 1.24 (1.69)

Perceived e�cacy of measure 0.03 (0.21 ) (0.68) 1.03 (1.56)

Appraisal of past �ood experience 0.41*** (0.13 ) (1.16) 1.51 (1.96)

Perceived bene�ts 0.53** (0.24 ) (1.07) 1.70 (2.71)

Perceived costs 0.06 (0.13 ) (0.82) 1.06 (1.38)

Social Network 0.43** (0.21 ) (1.01) 1.54 (2.34)

Intercept -9.29*** (1.84 ) (0.00) 0.00 (0.00)

Nagelkerke R2 0.34

N=272. Signi�cance levels: * p<0.1; ** p<0.05; *** p<0.01.

Four of the variables have signi�cant positive impacts: when perceived consequences, the
appraisal of past �ood experience, the wellbeing or the adaptation level in the social net-

3Note that this regression takes into account the possible existence of feedback e�ects between risk

perception and adaptation because the dependent variable relates to planned measures.
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work increase, the probability to adopt adaptation measures increases. The odds ratio
indicates the change in the odds of the explanatory variable for a unit change in the depen-
dent variable. For instance, for one unit change in perceived consequences the probability
of adoption will be multiplied by 1.83.

4 A Model of adaptation di�usion

In this section, we describe the model of di�usion of individual adaptation measures. We
�rst present the individual based model, its functioning and main variables. We also
compare the model with a corresponding aggregate model which provides some additional
insights into the dynamic behaviour of the model.

4.1 An individual based model

4.1.1 Agents

Agents are geographically situated and connected through a social network. Agents are
heterogenous in their attitudes, i.e. the attribute levels of the PMT variables listed in Table
3. Every year, agents decide whether or not to adopt an individual adaptation measure.

4.1.2 Construction of the small world network

In the following, we build a static social network that takes into account the spatial dis-
tribution of our data. The network variable plays a particular role in our individual based
model. In theory, the higher the proportion of neighbours in the household's network who
have adapted, the higher its attribute level for the social network variable. Clearly, this
variable will depend greatly on two factors: the type of network under consideration and
the number of neighbours considered. We test the impact of these two factors in the fol-
lowing section. As a reference case, we use a network with the "small-world" properties
of human social networks. In their seminal paper on small-world networks, Watts and
Strogatz (1998) describe the small-worldness of networks as a combination of both a high
clustering coe�cient, C, and a low path length, L, (relative to a regular network with the
same mean degree). Let us describe the steps of the construction of this social network.
We �rst build a network from the spatial distribution of our data by linking each node
with its n nearest neighbours and randomly adding links between isolated clusters in order
to get a closed network. As described in the data section, we chose n = 15. From this
network, which has a high clustering coe�cient and a high mean path length, we adopt
the rewiring method used by Watts and Strogatz (1998) to obtain the characteristics of
a small world. Namely, each link has a probability of pr to be removed and replaced by
another randomly chosen link. The rewired network has a lower mean path length and a
higher clustering coe�cient than the original network. In this procedure, C, decreases less
rapidly than L.
We repeat this rewiring process for various probability values, pr from 0.001 to 1, in order to
choose a rewiring probability, and an associated rewired network, for which the clustering
coe�cient (C) is still high and the average path length (L) is already low. Figure 4 presents
all the probabilities tested and associated values obtained for C and L relative to regular
networks with the same degree. Finally, we chose the network obtained for pr = 0.015
identi�ed by the red vertical line in Figure 4. Figure 5 shows the network obtained by
linking each households to the 15 geographically closest households surveyed (on the left)
and the network obtained after rewiring and used for the simulations (on the right).
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Figure 4: Clustering coe�cient, C, and average path length, L, of the network as a function
of rewiring probability according to the procedure proposed by Watts and Strogatz 1998.

Figure 5: Network of closest households computed from household locations (on the left)
and network of households' acquaintances obtained after rewiring and used in the simu-
lations (on the right). The positions of the points in the graphs are optimized for better
visualization of the networks (minimum crossing between edges, etc.) and not related to
the geographical positions of the households.
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4.1.3 Introduction of time and processes in the model

In order to better account for the dynamic nature of the adaptation process, we integrate
the following aspects in the model.

The time from motivation to action First, it should be recalled that Ph is the
probability that an individual is motivated to adopt an adaptation measure. Because
we do not know when motivated individuals will transform this motivation into action,
we consider that a motivated individual will really be adapted after an average of N
consecutive years during which he or she is motivated to adapt. Thus, the probability that
a motivated individual will adapt each year is: Ps = 1

N .

The duration of adaptation Adaptation measures may be non-permanent. Households
may forget to implement the measures, e.g. no longer storing valuables upstairs, or the
measure itself may fail, e.g. sewer non-return valves may age. In this paper, we only model
non-permanent adaptation. We consider that on average, adaptation duration is b years.
Hence, on average, the probability that an adapted individual will abandon adaptation is
1/b.

Adoption and abandoning of measures Adaptation takes place if a randomly drawn
value between 0 and 1 is smaller than the household's probability of adopting adaptation
measures, Ph. Some households that were previously adapted may decide to abandon
their adaptation measures. If they do so, they reset the attribute level of the perceived
probability variable to zero.

The general scheduling of the model The general scheduling of the model is as fol-
lows: every year, households decide in a random order whether or not to adopt an individual
adaptation measure. Next, some households may be reached by a yearly communication
policy which increases several of their attitude variables, depending on the policy. Finally,
all households update their attribute levels because they observe their social network and
update their attitude as a function of the number of adapted neighbours in the network.

4.2 The corresponding aggregate model

A similar aggregate model of adaptation di�usion can be written as follows. Call x(t) the
percentage of adapted households and let t be time. We have:

x(t + 1) − x(t) =
1

N
Ph(1 − x(t)) − 1

b
x(t), (2)

where N is the average delay of implementation of the measure, i.e. the time to transform
motivation into action, and b the average adaptation duration, i.e. the time households
stick to a given measure. Again, Ph is derived from the logistic regression and the proba-
bility of adoption is computed as in equation (1), except that attribute levels are no longer
household speci�c, ai,h but for example taken at the mean: ai = ai,h̄, hence:

Ph =
CΠI

i=1or
ai
i

CΠI
i=1or

ai
i + 1

. (3)

The aggregate model represents the average dynamics of the individual based model when
all agents are homogenous and in absence of any spatial correlations.
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When the social network is present, we have to account for the fact that the social network
variable depends on the percentage of adapted households, which is the state variable. We
have:

Ph(x(t)) =
CΠI−1

i=1 or
ai
i or

(1+4x(t))
s

CΠI−1
i=1 or

ai
i or

(1+4x(t))
s + 1

(4)

with ors, the odds ratio of the social network variable.

5 Experimental plan and simulations

We run numerical applications on the basis of the 272 households of our dataset, which
we have distributed spatially with their x-y coordinates and linked in a social network, as
described in section 4.

5.1 The baseline case

In the baseline case, the initial proportion of adapted households is 0.67, as argued at the
end of section 2. The odds ratios, ori, are the ones given in Table 4 in section 2. The mean
and standard deviations of households' attribute levels, ai,h, are given in Table 3 in section
2. The distribution of their initial values is represented in the following, in Figure 6. The
social network is the small-world network described in the previous section. Moreover, in
the baseline case b = 7 and N = 1, that is to say: adaptation lasts on average seven years
and once households are motivated to take adaptation measures, they act within a year.
Finally, the time horizon is 30 years.

5.2 Experimental plan

Our experimental plan contains the following ranges for parameter values. In the simula-
tions, all combinations of values are considered.

1. Adaptation duration, b, takes values between 3 and 13 years, by steps of 1.

2. The delay of implementation of the measure, N , takes values between 1 and 10 year,
by steps of 1.

3. Communication policies: we tested the impact of four communication policies, top
down on risk ("td-r"), top down on risk and coping ("td-rc"), people centered on
risk ("pc-r") and people centered on risk and coping ("pc-rc"), as well as the case of
no communication (no-com). As described in section 3, each communication policy
increases the attribute levels on risk or risk and coping by at most 4 points, with a
maximum of 5.

4. Social network: we consider the small-world network described in section 4 above,
and the case without a social network. To test the impact of the social network
variable, we also perform additional simulations with a network of closest neighbors
and a randomly generated network. Next to the network degree n = 15, we also test
the degrees n = 5 and n = 10.

5. PMT data sets and initial conditions: we consider two di�erent sets of data with
their associated initial conditions. First, we use our dataset, which is based on an
empirical survey in France. The initial conditions in our model are derived from our
dataset. Second, we test the data described in Bubeck et al. (2013), focusing on
the measures called "adaptive building use". The corresponding odds ratios can be
found in Bubeck et al. (2013) and Haer et al. (2016b). Initial conditions for Bubeck
et al.'s data are in part randomized, following the application by Haer et al. (2016b).
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Figure 6: Initial distribution of households' attribute levels
.

The time horizon is of 30 years. We produced 100 iterations of each simulation. We
computed the percentage of adapted households over the total number of households con-
sidered.
The simulations were run with the free opensource agent based modelling and simulation
platform NetLogo (NetLogo 6.0) developed by Wilensky (1999).

6 Results

6.1 Comparison between aggregate and individual based model and sen-

sitivity analysis

6.1.1 Comparison between aggregate and individual based model

Figure 7 shows the trajectory of adaptation levels for the case with no communication
policy and no social network. The black line represents the results of the aggregate model, a
mean �eld deterministic model, computed with average input data. The red line represents
the mean value of 100 iterations of the individual based model. The red shaded area
corresponds to the 20% to 80% con�dence interval of outcomes and the orange shaded
area to the upper and lower 20% of the simulation outcomes. We can see that computed
trajectories between the aggregate and the individual based model are very close: the
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trajectory of the aggregate model remains within the 20% to 80% con�dence interval of
the stochastic individual based model. These results show that apart from the fact that
the individual based model accounts for the heterogeneity of the population, the models
are similar. One striking feature of the result is that adaptation levels are decreasing. This
is due to the fact that only non-permanent adaptation measures are considered and the
adaptation duration is relatively short.
Figure 8 compares the same trajectories for the baseline case, in which we have included
the social network e�ect in both models as described in Section 4. We can see that in this
case, the computed trajectories between the aggregate and the individual based model are
very di�erent: in the middle of the simulation time, the trajectory of the aggregate model
exceeds the highest stochastic realisation simulated with the individual model and remains
above it for the rest of the simulation. The overestimation of the speed of di�usion by
aggregate models compared to the spatially explicit individual based models is well known
in the study of di�usion processes and especially in epidemiology (Bonté et al., 2012).
This may be due to spatial-autocorrelation of individuals able to transmit the attribute
to di�use: in a spatially explicit environment, when "infectious" individuals are close one
to each other, adapted individuals have less chance of meeting non-adapted individuals
than in an environment where space is not represented and individuals meet randomly. As
shown in Bonté et al. (2012) the in�uence of spatial auto-correlation in di�usion processes
depends on parameter settings.
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Figure 7: Adaptation trajectories for the aggregate model (black line) and the individual
based model at the mean (red line), with no social network, all other parameter values as
in baseline case

.

Despite the di�erence between spatially explicit and non-explicit modelling, the aggregate
model can help to gain some insights into the dynamics of our model. For example, in the
baseline case, we can explore how adaptation levels change when the parameter value b,
the adaptation duration, changes, as shown on the left in Figure 9. With high values of
b, the adaptation trajectories increase. Moreover, the greater b, the higher the proportion
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Figure 8: Adaptation trajectories for aggregate model (black line) and individual based
model at the mean (red line), baseline case.

of adapted households. For example when b = 30, the proportion of adapted households
approaches 90% whereas when b = 5 the proportion of adapted households is roughly
50%. Note that the values of b = 20 and b = 30 may not correspond to the assumption
of temporary adaptation measures, which we study in this paper. Next, we explore how
adaptation trajectories change when the parameter value N , the delay of implementation
of the measures changes, as shown on the right in Figure 9. Whereas N = 1 leads to long-
term adaptation levels of around 60%, increasing N leads to much lower steady states, e.g.
below 30% for N = 3 and below 10% for N = 10. Note again that a delay of 10 years in
implementation seems particularly long in our application.

Figure 9: Adaptation trajectories for the aggregate model with di�erent durations of adap-
tation, b, (left panel) and delay before taking action, N, (right panel).
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6.1.2 Sensitivity analysis of the individual based model

In order to gain a better understanding of the relative impact of the di�erent parameters of
our distributed model, we ran a global sensitivity analysis of the individual based model.
Figure 10 shows the values of the �rst order Sobol indices computed for the modalities and
parameters of the global experimental plan presented in section 5. The outcome variable
is the proportion of adapted households in the population after 15 years. We can see that
the parameters related to the dynamics, N and b, have a greater impact on the result than
the other parameters, the network con�guration, the communication policies or the data of
the PMT variables. The stochastic e�ect occurs because some parameter values are chosen
randomly in the simulations. One explanation for the strong impact of these variables is
that we consider rather high uncertainties for the dynamic parameters, varying by a factor
of 10.4
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Figure 10: Sobol indices for global experimental plan. Outcome variable: proportion of
adapted households after 15 years. Most in�uential input variables: N delay of action, b
adaptation duration.

Among the variables tested, the average delay of implementation, N is by far the most
in�uential in explaining the variance of outcomes. Hence, if one aims at improving the
dataset, most e�ort should be invested in evaluating the amount of time people take to
really implement adaptation measures.
Figures 11 shows how the proportion of adapted households at time step 15 is distributed
for di�erent values of N and b, based on 100 simulations. In particular, as shown in the left
hand panel in Figure 11, for N = 1, which is the value in the baseline case, the distribution
of adaptation levels is right skewed and many adaptation levels cluster above 60%. For
N = 5, the distribution of adaptation levels is more symmetric and mainly below 60%; for
N = 10, adaptation levels are mainly below 40%. The right hand panel in Figure 11 shows
how adaptation levels are distributed for di�erent values of b. The case of b = 7, which
is used for the baseline case, lies in the intermediate range. In this case, most adaptation
levels are below 40%.

4Note that the Sobol indices do not add up to one, due to the relatively small number of modalities

used for the computation. However, we did a convergence study, which showed that the indices presented

in Figure 10 are good approximations.
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Figure 11: Distribution of the proportion of adapted households at time step 15 considering
100 simulations. Distribution represented as a function of delay of action, N , (left) and of
adaptation duration, b, (right).

6.2 The impact of model con�guration on the ranking of communication

policies

Let us now study the impact of di�erent model con�gurations on the ranking of commu-
nication policies.

6.2.1 The impact of communication policies in the baseline case

Figure 12 shows the changes in the adaptation levels over 30 years in the baseline case: the
red line represents the no communication case, in which adaptation levels decrease over the
whole time horizon until they reach a level below 50%. In the presence of communication
policies (blue, brown, green and purple lines), adaptation levels begin to increase after
some steps and reach average levels of between 65% and 80%. As depicted in Figure 12,
the trajectory associated with the top down policy on risk and coping ("td-rc" policy)
crosses the trajectory associated with the top down policy on risk ("td-r" policy) and then
crosses the trajectory associated with the people centred policy on risk ("pc-r" policy).
From this point on, we observe that, on average, adaptation levels after "pc-rc" policies
(people centred policies on risk and coping) are higher than adaptation levels after "pc-r"
policies (people centred policies on risk) and adaptation levels after "td-rc" policies (top
down policies on risk and coping) are greater than adaptation levels after "td-r" policies
(top down policies on risk). Hence, risk and coping ("rc") policies outperform risk ("r")
policies. To illustrate the di�erent outcomes in more detail and to test whether mean
adaptation rates di�er signi�cantly from each other, we chose to focus on two particular
time steps (years) which we will use as examples in the following sections. We choose year
15 as it is long enough from the initialisation to see a di�erentiated impact of the policies,
and year 25 as it can be considered as a long term horizon in our model. Numerical results
for time steps 15 and 25 are presented in Table 5. Mann Whitney Wilcoxon rank sum tests
con�rmed that all mean trajectories di�er signi�cantly from one another except the "td-r"
and "pc-r" policies in both time-steps and the "td-rc" and "pc-r" trajectories in time step
15, where they cross. This con�rms the rankings above.
In the following, we analyze the performance of di�erent communication policies, taking
into consideration the fact that other in�uential variables have to be taken into account:
we �rst examine the impact of the PMT dataset, then the impact of the network parameter
and �nally the impact of the most important parameters b and N .
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Figure 12: Proportion of adapted households under communication policies in the baseline
case, evolution over a time horizon of 30 years.

Time step 15 Time step 25
Policy scenario mean (sd) mean (sd)

no communication (nocom) 0.51 (0.03) 0.48 (0.03)
top down on risk (tdr) 0.68 (0.03) 0.71 (0.03)
top down on risk and coping (tdrc) 0.69 (0.03) 0.74 (0.03)
people centred on risk (pcr) 0.68 (0.03) 0.71 (0.03)
people centred on risk and coping (pcrc) 0.70 (0.03) 0.76 (0.03)

Table 5: Mean adaptation levels and standard deviations (in brackets) in the baseline case
at time steps 15 and 25.

6.2.2 The importance of the psychological datasets

Using data from the literature To assess the relative importance of the dataset ex-
plaining households' perceptions and motivations, we ran the model using a dataset from
the literature. Bubeck et al. (2013) conducted a survey of 752 �ood prone households along
the River Rhine in Germany. Based on the PMT framework, they explained households'
decision to take precautionary measures. This data was already used to assess the adap-
tation behaviour of Dutch households in Haer et al. (2016b). We use it in the following as
a comparison to our data. In particular, we take the odds-ratios explaining the adoption
of adapted building use, which are non permanent adaptation measures. We adopt the
initial conditions and setups proposed by Haer et al. (2016b). Note that we change no
other assumptions in the model, neither the institutional setting nor elements related to
the hazard, which could be an interesting assumption in further research.
Figure 13 shows the evolution of adaptation levels over 30 years using this alternative
dataset, all other parameters corresponding to the baseline case. Now, the highest mean
adaptation rate is reached with the "td-rc" policy.
As an illustration, mean adaptation levels at time step 15 are listed in Table 6. Mann Whit-
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Figure 13: Proportion of adapted households under communication policies, based on
Bubeck et al. 2013, evolution over a time horizon of 30 years.

Baseline case Alternative case
Policy scenario mean (sd) mean (sd)

no communication (nocom) 0.51 (0.03) 0.56 (0.04)
top down on risk (tdr) 0.68 (0.03) 0.64 (0.03)
top down on risk and coping (tdrc) 0.69 (0.03) 0.71 (0.02)
people centred on risk (pcr) 0.68 (0.03) 0.65 (0.04)
people centred on risk and coping (pcrc) 0.70 (0.03) 0.70 (0.03)

Table 6: Mean adaptation levels (standard deviations in brackets) in the alternative case,
with data from Bubeck et al. (2013), compared to the baseline case, at time step 15.

ney Wilcoxon rank sum tests show that all mean adaptation levels are signi�cantly di�erent
from each other at time step 15. At time step 25, the "td-r" policy is not sign�cantly dif-
ferent from the "pc-r" policy (as in the baseline case) but neither is the "td-rc"-"pc-rc"
pair distinctive any longer.

Comparison with the baseline case Let us now compare the results from this al-
ternative case with our results. As can be seen by comparing Figures 12 and 13, in the
alternative case, adaptation rates �ex to an upward trend earlier than in the baseline case.
This is especially true for the "rc" policies. This could be explained with the odds ratio of
the coping variables. Indeed, in Bubeck et al. (2013) the odds-ratio of the perceived e�cacy
of measures is greater than in our data. Combined with a distribution of lower attitude
levels, this may lead to a sharper increase in adaptation rates in presence of communication
policies that play on the coping variable.
Table 6 enables comparison of the simulations at time step 15. We can �rst compare the
rankings of the di�erent solutions: in both cases, "pc-rc" policies perform better than
"pc-r" policies and "td-rc" policies perform better than "td-r" policies. However, in the
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baseline case, the "pc-rc" policy is better than the "td-rc" policy but in the alternative
case, the "td-rc" policy is better than the "pc-rc" policy. Next, we can compare the levels
of adaptation in both cases. It should be recalled that the initial value is not the same:
it is collected data in the baseline case and a random value between zero and one in the
alternative case. Although the initial value is smaller in the alternative case, it leads to
higher levels of adaptation in the no communication scenario. On the other hand, "pc-
rc" policies result in the same absolute levels of adaptation with both datasets. These
observations are true for both, time step 15 and time step 25.
To conclude this comparison, on the grounds of these two modelling cases, it is not possible
to decide whether people centred risk and coping ("pc-rc") or top down risk and coping
("td-rc") policies perform best.

6.2.3 The importance of the social network variable

The small world network In the following, we illustrate the impact of the small world
network variable at time steps 15 and 25. Figure 14 shows mean adaptation levels at
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Figure 14: Boxplot of adaptation rates under communication policies at time step 15 (left
panel) and at time step 25 (right panel) baseline case (red) and case with no network
(blue).

time step 15 (left) and time step 25 (right). The upper (red) boxes correspond to the
mean adaptation level in the baseline case, hence including a small world network, and
the lower (blue) boxes to the case with no social network. The corresponding means and
standard deviations at time step 15 are given in Table 7 and those at time step 25 in
Table 8, compared to the baseline case. The absence of the small world network decreases

Baseline case With no network
Policy scenario mean (sd) mean (sd)

no communiction (nocom) 0.51 (0.03) 0.30 (0.02)
top down on risk (tdr) 0.68 (0.03) 0.42 (0.03)
top down on risk and coping (tdrc) 0.69 (0.03) 0.44 (0.03)
people centred on risk (pcr) 0.68 (0.03) 0.41 (0.03)
people centred on risk and coping (pcrc) 0.70 (0.03) 0.46 (0.03)

Table 7: Means and standard deviations of adaptation rates at time step 15, baseline case
and case with no network.

the absolute value of adaptation levels. For example, at time step 15, under the "pc-rc"
policy, mean adaptation levels with the smallworld network reach 70%, whereas they are
only 46% on average in the absence of a social network. At time step 25, the di�erences
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between policies are even more pronounced: under the "pc-rc" policy, mean adaptation
levels with the smallworld network reach 76%, whereas they are at only 51% on average in
absence of a social network. Interestingly, the ranking of the performance of the di�erent
communication policies remains the same in presence and absence of the social network.

Baseline case With no network
Policy scenario mean (sd) mean (sd)

no communication (nocom) 0.48 (0.03) 0.28 (0.03)
top down on risk (tdr) 0.71 (0.03) 0.44 (0.03)
top down on risk and coping (tdrc) 0.74 (0.03) 0.50 (0.03)
people centred on risk (pcr) 0.71 (0.03) 0.44 (0.03)
people centred on risk and coping (pcrc) 0.76 (0.03) 0.51 (0.03)

Table 8: Means and standard deviations of adaptation rates at time step 25, baseline case
and case with no network.

Other network types We also tested the impact of other network types, namely the
network of n closest neighbours and a random network, and other degrees of connection,
namely n = 5, n = 10 and n = 15. In all policy scenarios with communication policies, the
network types and degrees had no impact on the simulation results. This is mainly due
to the fact that the communication policies a�ect households randomly in the population,
independently of their positions in the network. In the scenario with no communication
(no-com), the e�ect of the type of network is very small, as shown in Figure 15, which
represents adaptation rates for di�erent network types and network degrees, at the end of
the time horizon in the baseline case.

6.2.4 Importance of the dynamic variables

We now turn to the impact of the dynamic variables on the trajectories of individual
adaptation and the e�ciency of communication policies. We �rst discuss the impact of b,
the adaptation duration, and then the impact of N , the delay before implementation of
the measures.

Adaptation duration Let us consider the cases where adaptations last either 3 or 11
years on average, instead of 7, all other variables being the same as in the baseline case.
As shown in the aggregate model, decreasing b will lead to lower adaptation trajectories
and increasing b to higher trajectories.
When b = 3 adaptation trajectories without policies decrease to nearly 20% in year 30,
compared to slightly below 50% in the baseline case, whereas the best performing policy
with b = 3 leads to adaptation levels of only 45%. Table 9 illustrates mean adaptation
levels at time step 15. The ranking of the performance of policies is the same as in the
baseline case and Mann Whitney Wilcoxon rank sum tests show that only the "td-r"-"pc-
r" pair is not signi�cantly di�erent. However, absolute adaptation levels in presence of
the best performing policy are even lower than in the no communication scenario of the
baseline case.
Figure 16 shows adaptation trajectories for the case where the adaptation duration is 11
years on average. When b = 11, adaptation trajectories with no communication policy
decrease to a level of above 60%, compared to below 50% in the baseline case. Likewise,
the adaptation level after policy intervention reaches 85% in case of the most e�cient
policy, compared to 75% in the baseline case. The "pc-rc" policy still performs best over
the whole time horizon. At time step 15, only the "pc-rc" policy is really distinct from
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Figure 15: Boxplot of adaptation rates at the end of the time horizon in the baseline
case. Comparison of the e�ect of di�erent network types (in colour) and di�erent network
degrees, on the x-axis.

the others. However, at time step 25, the results are similar to the baseline case : only
the "tdr-pcr" pair is not signi�cantly di�erent from the others. As an illustration, the
mean adaptation rates for time step 25 are given in Table 10. The relative performance of
policies is the same as before, only the absolute adaptation levels change.

Delay of implementation of the measure Let us �nally discuss the case where the
adaptation measure is only operational three years on average after the decision to imple-
ment it (N = 3). Individuals are still assumed to abandon measures on average after seven
years (b = 7). The adaptation trajectories are shown in Figure 17.
Note that mean adaptation levels are much lower than in the baseline case. With no com-
munication policies, the proportion of adapted households reaches slightly more than 20%
only, compared to levels approaching 50% in the baseline case. The most e�cient com-
munication policy only leads to adaptation levels of below 45% at time step 30, compared
to more than 75% in the baseline case. However, as before, the overall ranking of policies
does not change compared to the baseline case. Mann Whitney Wilcoxon rank sum tests
show that all adaptation levels at time steps 15 and 25 are signi�cantly di�erent from one
another, except for the "td-r" and "pc-r" pair (as in the baseline case). Table 11 illustrates
mean adaptation rates compared to the baseline case at time step 15.
Comparing the results in Table 11 and in Table 7 illustrates that changing the delay of
adaptation by two years has a stronger impact than switching the network o�. Moreover,
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Baseline case Duration b = 3
Policy scenario mean (sd) mean (sd)

no communication(nocom) 0.51 (0.03) 0.24 (0.02)
top down on risk (tdr) 0.68 (0.03) 0.38 (0.03)
top down on risk and coping (tdrc) 0.69 (0.03) 0.41 (0.03)
people centred on risk (pcr) 0.68 (0.03) 0.38 (0.03)
people centred on risk and coping (pcrc) 0.70 (0.03) 0.42 (0.04)

Table 9: Means and standard deviations of adaptation rates at time step 15, baseline case
and case where b = 3.
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Figure 16: Proportion of adapted households under communication policies, adaptation
duration, b = 11 years.

comparing the results in Table 11 and in Table 9 shows that, in absence of communication
policies, increasing the delay of adaptation by two years has a smaller impact on adaptation
levels than decreasing the adaptation duration by 4 years. On the other hand, in presence
of communication policies, increasing the delay of adaptation by two years has a bigger
impact on adaptation levels than decreasing adaptation duration by 4 years. Finally note
that the impact of increasing N is similar for the alternative dataset.

7 Conclusion

We have built a dynamic agent based model of the adoption of individual adaptation
measures against �oods. Parameterized with data from an original survey conducted in the
South of France, the model can be used to discuss the e�ciency of di�erent communication
policies and to evaluate the importance of poorly known variables of adaptation dynamics.
We can conclude that the communication policies studied here, which were proposed in
the literature (Haer et al., 2016b), have quite a big impact on adaptation levels in the
population. In the baseline case, communication policies increase adaptation levels by 20
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Baseline case Duration b = 11
Policy scenario mean (sd) mean (sd)

no communication (nocom) 0.48 (0.0) 0.62 (0.03)
top down on risk (tdr) 0.71 (0.03) 0.81 (0.03)
top down on risk and coping (tdrc) 0.74 (0.03) 0.83 (0.03)
people centred on risk (pcr) 0.71 (0.03) 0.81 (0.03)
people centred on risk and coping (pcrc) 0.76 (0.03) 0.84 (0.03)

Table 10: Means and standard deviations of adaptation levels when b = 11, compared to
the baseline case, at time step 25.
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Figure 17: Proportion of adapted households under communication policies, delay of action,
N = 3 years.

percentage points at time step 15 and up to over 30 percentage points at the end of the time
horizon. Because the decision model of the agents is based on the psychological protection
motivation theory that decomposes the individual adaptation motivation into variables
relating to threat appraisal and coping appraisal, we can draw some general lessons about
di�erent types of communication policies. In all settings, even in the short term, policies
which contain information on both the risk of �ooding and how to cope with it, perform
better than policies which only deal with risk. Moreover people centred policies on risk
and coping perform best in all scenarios based on our dataset. Although absolute levels of
adapation do not change much when using an external dataset, relying on external data
from other studies leads to the only case where the top down policy on risk and coping
performs best.
However, conclusions about the absolute levels of adaptation, and hence on overall damage
resulting from �oods, should be drawn with caution. The sensitivity analysis makes it
possible to target those parameters for which more information should be collected: the
delay of implementation of the measure is the most important parameter in our model,
before the adaptation duration. This calls for more dedicated studies on the real barriers
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Baseline case Delay N = 3
Policy scenario mean (sd) mean (sd)

no communication (nocom) 0.51 (0.03) 0.27 (0.03)
top down on risk (tdr) 0.68 (0.03) 0.37 (0.03)
top down on risk and coping (tdrc) 0.69 (0.03) 0.39 (0.03)
people centred on risk (pcr) 0.68 (0.03) 0.37 (0.03)
people centred on risk and coping (pcrc) 0.70 (0.03) 0.40 (0.03)

Table 11: Means and standard deviations of adaptation rates at time step 15, baseline
case compared with the dynamic case with delay of action, N = 3 years, and adaptation
duration, b = 7 years.

to implementation and the sustained use of adaptation measures by households.
Several extensions to this article are possible: �rst, households could be mobile, as as-
sumed in Haer et al. (2016b), which could lead to the abandonment of certain individual
adaptation measures, namely behavioural measures. Second, adaptation behaviour could
depend on the occurrence of �ood events, as several studies have shown that experience
is an important factor for individual adaptation. Next, we could consider di�erent insti-
tutional settings, which would favour or hinder individual adaptation. Moreover, there
could be economic incentives for individual adaptation measures, such as subsidies for the
implementation of the measures. One could also consider that the policy maker has some
speci�c targets which he/she would like to achieve in a cost e�cient way: e.g. reaching
a certain level of adapted households or reducing overall damage by a speci�ed amount.
He/she could then decide which type of policy is the best to reach this objective. Finally,
it could be challenging to use the model for simulations in two di�erent countries, with
di�erent hazard, di�erent institutional settings and di�erent people.5
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