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Abstract

We analyze the way French farmers manage production risks, especially the risk

of drought. To this end, we assess the role of irrigation in farmers' risk management.

Based on FADN accountancy data, we jointly estimate farmers' attitudes to risk and

their production decisions. We correct for sample selection bias and endogeneity.

Results of the probit model show that irrigation technology serves as a self-insurance.

Results of the joint estimation show that irrigating farmers have higher means but

lower variance of pro�ts than non-irrigating farmers. However, for already irrigating

farmers, using more water volumes increases the variance of outcome.
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1 Introduction

It is common knowledge that irrigation water increases agricultural yields. Irrigation is
also supposed to decrease the variability of yields, and hence the variability of income.
But, empirical evidence of this is rare. One reason is that irrigation comes at a cost:
owning irrigation technology is expensive, and this may o�set the impact of increases in
yields. In addition, crops that require irrigation may react less easily to extreme climatic
events, which in turn may increase the variability of yields and income. On the other
hand, irrigation may trigger additional bene�ts because it enhances the quality of crops.
Vandeveer et al. (1989) showed that irrigation decreased variability of agricultural income
in Louisiana, whereas Groom et al. (2008) could not con�rm this assumption in their case
study in Cyprus.

In this article, we evaluate the role of irrigation in farmers' production processes, taking
into account the natural variability of production and the fact that farmers have di�erent
attitudes towards risk. One central question of this paper is whether irrigation water is a
risk-increasing or a risk-decreasing input. To answer this question, we test the marginal
impact of irrigation water use on the distribution of agricultural yield and pro�t (see Groom
et al., 2008). We use an approach in which production and preferences are estimated jointly
(see Kumbhakar and Tveteras, 2003), which avoids making any assumptions about farmers'
risk aversion. Because we deal with irrigating and non-irrigating farmers, we adapted this
approach to be able to deal with endogeneity and sample selection bias, which is the main
novelty of our paper.

Another question related to the role of irrigation water in the production process is
whether irrigation is used as a self-insurance tool to tackle drought (Amigues et al., 2006).
Reynaud (2009) studied the way farmers manage drought risks via irrigation and crop
diversi�cation. He showed that for French farmers, crop diversi�cation is more e�cient
than irrigation in tempering possible revenue losses. In this paper, we expect irrigation to
be a common drought risk management tool and model the link between adopting irrigation
technology and buying a yield insurance.

We base our analysis on the joint estimation of stochastic production parameters and
risk preferences. Early literature on stochastic production functions focused on separate
estimations of mean production and production risk parameters. Just and Pope (1978,
and 1979) proposed breaking down the stochastic production function into a mean and
a variance term, which allowed the e�ects of inputs on the distribution of outputs to
either increase or decrease (see also Vandeveer et al., 1989, for an application). This is one
element we take up in this paper. Antle (1983) used an approximation of the distribution of
outputs by its moments1 and introduced the utility function in the estimation of stochastic
production functions, stating that the optimal allocation of inputs depends on both the
marginal e�ect of inputs on outputs and the risk attitudes of the decision maker (Antle,
1987, 1988; Antle and Goodger, 1984; Groom et al., 2008; Amadieu and Viviani, 2011).

1He showed that Just and Pope's approach restricts the e�ects of inputs on the higher moments of the
output distribution, i.e. the third (skewness) and fourth (kurtosis) moments.

2



Di Falco and Chavas (2006) expanded Just and Pope's mean-variance approach to analyze
the role of crop genetic diversity in the protection of pest control and drought management
in Sicily. However, these approaches focus on the analysis of the distribution of residuals
and are sequential estimations (see Eggert and Tveteras, 2004). The joint estimation of
stochastic production functions and risk attitudes both improves e�ciency and ensures
consistent estimates (see Love and Buccola, 1991; Shankar and Nelson, 1999), which is the
reason we adopted this approach.

More recently, studies turned toward the joint estimation of stochastic production func-
tions and risk attitudes (Antle, 1983; Antle and Goodger, 1984; Love and Buccola, 1991,
1999; Shankar and Nelson, 1999; Zellner et al., 1966). Love and Buccola used such a joint
estimation approach but needed to specify a utility function and to assume a normal distri-
bution of errors. Kumbhakar and Tveteras (2003) proposed joint estimation of preferences
and technology in a mean-variance model, without specifying a utility function and without
making any assumptions on the distribution of the residuals. They also showed how risk
coe�cients2 can be derived and how the type of risk attitudes3 can be tested for. Recent
applications4 include an analysis of European subsidy policies in Finland (see Koundouri
et al., 2009). Some most recent studies heavily criticize the above empirical methods, for
di�erent reasons. Lence (2009) and Just and Just (2011) for example showed that esti-
mations of the type of risk attitudes in this context are not robust. While Lence (2009)
seems to accept estimations of risk coe�cients in large samples, Just and Just (2011) claim
that imposing any arbitrary speci�cation on production risk or production structure un-
dermines the possibility of global identi�cation of risk preferences (see our conclusion for
a more detailed discussion).

Our paper is based on the approach of Kumbhakar and Tveteras (2003) but it corrects
for sample selection bias and deals with irrigated agriculture. Of course, previous literature
has addressed the problem of optimal irrigation water use: for example Groom et al. (2008)
analyzed the use of irrigation water and the impact of water quota policies in Cyprus, using
Antle's moment based approach. Koundouri et al. (2006) modeled a farmer's decision to
adopt new irrigation technologies in Crete, also using the �exible moment based approach.
However, none of these studies used joint estimation of risk attitudes and production
decisions. In addition, none of these studies applies to the situation in France.

The paper is organized as follows. In section (2) we present the dataset. In section
(3) we describe the theoretical model, both in general, and including irrigation water use.
In section (4) we describe the econometric model: the estimation procedure for correcting
sample selection and the procedure for estimating jointly stochastic production and risk

2Arrow-Pratt and Downside risk coe�cients can be computed. However, the downside-risk coe�cient
should be interpreted with caution because the proposed model is based on a mean-variance approach and
does not model skewness.

3Decreasing absolute risk aversion (DARA), constant absolute risk aversion (CARA), or increasing
absolute risk aversion (IARA).

4See also Isik (2002) for models including price uncertainties. Here, we consider a short time span with
low price variability.
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preferences. In section (5) we discuss the results, both concerning the choice of irrigation
and yield insurance and concerning the role of irrigation in a risky production process. In
section (6) we draw some conclusions and outline new research perspectives.

2 Data

Our analysis is based on farm-level production data from the European Farm Accoun-
tancy Data Network (FADN, RICA-Agreste). Our dataset comprises 243 observations for
corn growers in the years 2006 and 20075. The sample comprises the most important
corn producing regions in France (see map in �gure 1): Alsace, Aquitaine, Midi-Pyrénées,
Poitou-Charente and Rhône-Alpes but also Haute and Basse Normandie, Pays de la Loire
and Auvergne.

Figure 1: Represented corn-producing regions in France: in dark main producing regions

Farmers are specialized in corn production, as most of their margin comes from cereal
production6 and corn occupies at least 60% of their cultivated area. This allows us to
allocate production costs to corn production, according to the assumption of stochastic non-
jointness (see Antle, 1983; Antle and Goodger, 1984). For example, concerning irrigation

5We use the dataset as a pooled base and not as a panel data. As a consequence, we do not detect
individual-speci�c unobserved e�ects.

6Cereal growers corresponding to TF 13 and 14 in FADN.
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water, this assumption means that all irrigation water charges apply to corn production.
Our sample con�rms that 96.75% of all irrigated areas are used for corn.

Labor input volume and price were derived from the FADN dataset. The labor price
includes salaries for employees and the farmer. Water and fertilizer prices were derived
by combining the FADN dataset with the Cropping Practices Survey (CPS) data of 2006
(Enquête sur les pratiques culturales - Agreste). The CPS provides water and fertilizer
volumes at the plot level for a sample of corn plots in about 100 geographical zones (French
départements). We computed mean input volumes at the departmental level and considered
them to be representative of the department. We determined departmental input prices
by dividing FADN input charges by CPS input volumes for each department. We then
computed individual input volumes (for water and fertilizer use) based on individual input
charges in FADN and the above departmental prices. The Meteo-France SAFRAN dataset
provides data on rainfall, evapotranspiration and temperatures at a scale of 8 km2 for the
whole French territory and for the period 2002 to 2007.

Summary statistics for production and the meteorological context are listed in table 1.
On average, farmers use 58 ha for corn production, generating a yield of 10.24 t/ha. 68%
of the farmers are irrigators, using 1123 m3/ha of water on average, for an input price of
0.07 e/m3. The maximum volume applied is 4714 m3/ha and the minimum 14 m3/ha.
CAP payments amount to 462 e/ha, or 26790 e for the average surface area, representing
over 55% of total average pro�ts.

We de�ne water availability as the di�erence between rainfall and evapotranspiration
at the commune level7. This is what meteorologists call e�cient rainfall. We use this
variable as a proxy for overall water availability. Throughout our analysis, we consider
water availability during the irrigation campaign from mid-May to the end of August8,
including the crucial growth stage of corn and excluding the period after harvest. For
the two-year study period, mean rainfall from mid-May to mid-August was relatively low
compared to mean evapotranspiration for the same period (cf. table 1). Mean water
availability was thus negative, at -143 mm. This means that farmers indeed took their
production decisions in the context of water de�cit, although this is a moderate de�cit
compared to dryer years and climate. Moreover, standard errors of water availability (72
mm) are high, which means that farmers actually did face climatic risks.

Finally, the loss-ratio is de�ned as the ratio of insurance payments to the insurance
premium paid. In the following analysis, we explain the probability to irrigate and the
probability of buying yield insurance as a function of di�erent variables. We use the loss
ratio as an indicator for expected return from insurance.

7The farmers in the sample are spread over 137 communes.
8Irrigation campaigns have been precisely determined for each department by the help of the CPS

dataset.
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Table 1: Descriptive statistics for the variables used in the model

Variable Unit Mean Standard
deviation

Surface ha 57.73 37.59
Yield t/ha 10.24 1.88
Price e/t 153.00 33.10
Water∗ m3/ha 762.77 936.19
Fertilizer units/ha 108.98 54.40
Labour hours/ha 54.74 40.72
Water price e/m3 0.074 0.06
Fertilizer price e/unit 1.45 0.42
Salary∗∗ e/hour 22.14 18.17
CAP subsidy e/ha 461.90 131.99
Age years 48.6 8.3

Rain mm 295.89 67.78
Evapotranspiration mm 438.69 87.98
Water availability∗∗∗ mm -142.80 71.77
Water availability in 2005 mm -224.66 69.00
Variance of water availability in 2005 mm 16.50 6.40
Skewness of water availability in 2005 mm 2.79 2.18
Intertemp. mean of income (2002 to 2005) 1000e 29.32 2.185
Intertemp. variance of income (2002 to 2005) 1000e 30.61 4.895
Loss ratio in 2005 % 0.53 1.25

Number of observations: 243. SAFRAN - Meteo France. RICA - Agreste.
∗For whole population. Irrigators only: 1123.35 m3/ha (sd 941.16).∗∗Mean labour price for total population.

∗∗∗Water availability is computed from mid-May to the end of August.
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3 The model

3.1 A model explaining production choices in a risky environment

In this section, we present the model we aim to study. Assuming constant returns to scale
with respect to land, the stochastic yield function, Y , is broken down according to Just
and Pope (1978; 1979):

Y = f(X) + g(X)ε. (1)

The mean function f depends on the variable inputs X like labour or fertilizer (and irriga-
tion water in the second step). g is the variance function of the yield associated with the
random term ε which represents the exogenous shock on production with E(ε) = 0 and
V ar(ε) = 1. The per hectar pro�t of the farmer is given by:

Π = pY − r′X,

where p is the output price vector (assumed to be risk-free) and r is the input price vector
for inputs X. Fixed costs and lump-sum subsidies can be neglected at this stage (see
Hennessy, 1998; Just, 2011) as they do not impact input decisions (note that subsidies are
reintroduced later to measure the size of pro�ts). The farmer's decision problem, under
expected utility maximization is:

max
X

EU [Π] = max
X

EU
[
p (f(X) + g(X)ε)− r′X

]
. (2)

The �rst order condition with respect to each input xj ∈ X is given by:

∂f

∂xj
=
rj
p
− ∂g

∂xj

E[εU ′]

E[U ′]
. (3)

The ratio E[εU ′]
E[U ′] ≡ θ determines risk preferences, independent of inputs, where U ′ is

the marginal utility of pro�t9. This ratio is negative for risk averse agents, zero for risk
neutral agents and positive for risk lovers. The sign of the derivative ∂g

∂xj
indicates whether

the input xj is risk-reducing (
∂g
∂xj

< 0) or risk-increasing ( ∂g∂xj > 0). Following Kumbhakar

and Tveteras (2003), it is possible to break down the risk preference function, θ, depending
on the Arrow-Pratt measure of absolute risk aversion AR, the variance of pro�ts σ2

π, the
skewness of the distribution of ε and the measure for the downside risk aversion DR. Once
a parametric form of AR is assumed, it is possible to derive DR10.

9Like the other variables, risk preferences are speci�c to each individual, i. We have omitted the
subscripts in order to improve readability.

10According to Kumbhakar and Tveteras, the �exible quadratic form of AR allows testing for CARA,
IARA and DARA, respectively: when ∂AR/∂µπ = δ1 + δ2µπ, is positive (negative) agents are IARA
(DARA). This was strongly put into question in the most recent literature, (see Lence, 2009; Just and
Just, 2011)
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3.2 A model including irrigation

Let xw ∈ X be irrigation water used and xj ∈ X variable inputs other than irrigation
water (i.e. labour and fertilizer)11. Depending on whether the farmer irrigates or not,
yield is given by:

Y =

{
f(xj , xw) + g(xj , xw)ε if xw > 0,
f(xj) + g(xj)ε otherwise.

(4)

Thus one faces a problem of sample selection with respect to irrigation water. The �rst
order condition with respect to xw is now given by:

∂f

∂xw
− rw

p
+

∂g

∂xw
θ = 0, (5)

if xw > 0. If xw = 0, this expression is negative.
For the irrigation water input, xw, this arbitrage condition states that the farmer

irrigates as long as the marginal product of irrigation water equals its cost-price ratio net
of the cost of risk. The cost of risk describes the additional exposure to risk that the farmer
faces when using one further unit of irrigation water, according to his risk preferences. For
example, when the farmer is risk averse, i.e. θ < 0 and irrigation increases risk ∂g

∂xj
> 0,

there is an additional cost of using more irrigation water. When the farmer is risk averse
and irrigation decreases risk ∂g

∂xj
< 0, there is an additional gain in irrigating. Likewise,

when the farmer is a risk taker, i.e. θ > 0 and irrigation reduces (increases) risk, there is
an additional cost (gain) of increasing irrigation.

4 The estimation procedure

4.1 The �rst step probit model

In order to correct for endogeneity and censoring in water input choice, we estimate the
probability of irrigating for each individual (i = 1, ..., N), we compute the inverse Mill's
ratio for irrigating farmers (i = 1, ..., N1, with N1 ⊂ N) and we use this ratio as a regressor
in the yield function.

More precisely, we use a system of simultaneous equations with a recursive structure
(see Maddala, 1983). The probability to irrigate, Prob(x∗iw > 0|xij , Zi, D, zi), is explained
by a set of exogenous variables (Zi and D) and one endogeneous dichotomic variable, zi

12.
The model reads thus as follows:{

x∗wi = α1xji + α2Zi + α3zi + α4D + εwi

z∗i = β1xji + β2Zi + β3D + εzi,
(6)

11It should be noted that the decision to use irrigation water is di�erent from the decision to adopt a
new irrigation technology. For the yield function, we assume irrigation equipment and technology exist.

12Zi is a set of individual variables, D is a set of climatic data, zi is measured by the premium paid for
yield insurance.
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xwi =

{
1 if x∗wi > 0

0 otherwise,
zwi =

{
1 if z∗wi > 0

0 otherwise
(7)

where x∗wi and z∗i are the latent variables associated to irrigation and insurance re-
spectively. (εw, εz) is the vector of bivariate normally distributed disturbances with the
restrictions V ar(εwi) = V ar(εzi) = 1.

We then compute the inverse Mill's ratio M̂σu = φ()
Φ()σu, where φ and Φ are respectively

the normal density and the cumulative distribution function of Prob(x∗iw > 0|xij , Zi, D, zi)
and σu is the correlation between unexplained yield and the latent variable of irrigation.
This corrects for endogeneity and sample selection bias in the following joint estimation
model (see equation 9).

4.2 The second step system of equations

The system we consider consists of 4 equations, the yield function and the FOCs for the
three inputs, k = w, f, l. The yield function is given by:

y

g(X)
=
f(X)

g(X)
+ ε. (8)

The functional forms are chosen as follows: the mean function is quadratic:

f(xw, xf , xl) =
∑
k

αkxk +
1

2

∑
k

∑
k′

αkk′xkxk′ + σuM̂, (9)

while the risk function takes a Cobb-Douglas form:

g(xw, xf , xl) = xβww x
βf
f x

βl
l . (10)

The FOCs for the three inputs, k = w, f, l, are:

αk + αkkxk +
∑
k′ 6=k

αkk′xk′ −
rk
p

+ θ(.)
g(.)

xk
βk = uk. (11)

The risk attitude is determined for each individual in the sample13 and is de�ned by
the following equation:

θ =
−ARσπ + 0.5DRσ2

πγ

1 + 0.5DRσ2
π

. (12)

We assume that AR takes a quadratic form as a function of mean pro�ts, µπ:

AR = δ0 + δ1µπ + 0.5δ2µ
2
π, (13)

13The index i has been dropped for clarity of reading.
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while DR can be derived from AR as follows:

DR =
−∂AR
∂µπ

+AR2. (14)

The quadratic form of AR and its dependence on mean pro�ts only are strong assumptions,
which we discuss in the conclusion. The expected `pro�t' is computed by multiplying
estimated mean yields, f(.), by output prices, p, subtracting input costs for all three
inputs (fertilizer, labor, water) and adding decoupled CAP subsidies, s:

µπ = pf(.)−
∑
k

rkxk + s, (15)

for k = w, f, l. Finally, the variance of expected pro�ts is based on the value of the risk
function, g(.):

σ2
π = p2g(.)2. (16)

We use full information maximum likelihood estimation (FIML), an approach to the es-
timation of simultaneous equations. One potential inconvenient of FIML estimation is
that it assumes normally distributed residuals, assumption which is not needed by single
equation methods, such as GMM. However, as shown in the literature, FIML is superior
to single equation limited information methods, even if the model is severely misspeci�ed
and the measurement errors are non-normally distributed (see for example Fuhrer et al.,
1995). Another advantage of FIML estimation is that it allows us not to instrument for
endogenous inputs, for which we would need additional instrumental variables.

5 Results

5.1 A simultaneous probit model of irrigation and insurance choice

We now turn to the interpretation of the probit estimation in table 2. Let us �rst consider
the coe�cients linked to irrigation choice. Farmers are sensitive to past mean and variance
of climate. The higher the previous year's water availability, the lower the probability
the farmer will adopt irrigation technology. The higher the variance of water availability,
the greater the probability the farmer will use irrigation. Farmers are not sensitive to
the skewness of water availability when it comes to the choice of irrigation. But they are
sensitive to the variance of income generated in the past: the more variable their income
in the past, the greater the probability farmers will adopt irrigation technology. Irrigation
is thus used as a tool to smooth farmers' income. This is in line with previous results in
the literature (see Vandeveer et al., 1989; Koundouri et al., 2009).

Next, CAP subsidies have a positive impact on irrigation choice. In France, since 2006,
CAP payments have been decoupled from production and, in addition, speci�c subsidies
for irrigated land have been stopped. However, there is a memory e�ect as farmers who
irrigated in the past continue to receive higher average CAP payments. Water price has
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Table 2: Probit estimates of irrigation and insurance choice

Estimated Standard
parameter error

Probability to irrigate

Intercept 1.038 1.552
Water availability in 2005 -0.018∗∗ 0.006
Variance of water availability in 2005 0.080∗∗ 0.040
Skewness of water availability in 2005 -0.018 0.453
Intertemp. mean of income -0.165 0.145
Intertemp. variance of income 0.126∗∗ 0.059
CAP subsidies 0.541∗∗ 0.209
Age -0.033 0.022
Secondary education 1.163∗ 0.656
Higher education -0.167 0.865
Gender -2.377∗∗ 0.855
Water price -27.814∗∗ 4.851
Fertilizer price 0.128 0.276
Labour price -0.021∗ 0.011
Yield Insurance -1.205∗∗ 0.293

Probability to be insured

Intercept 0.463 1.088
Water availability in 2005 -0.007∗∗ 0.002
Variance of water availability in 2005 0.065∗∗ 0.022
Skewness of water availability in 2005 -0.551∗∗ 0.225
Intertemporal mean of income 0.015 0.066
Intertemporal variance of income 0.024 0.026
CAP subsidies 0.159 0.101
Age -0.030∗∗ 0.013
Secondary education 0.897∗∗ 0.385
Higher education 1.294∗∗ 0.451
Gender (1=being a male) -1.531∗∗ 0.442
Water price -1.409 1.818
Fertilizer price 0.287 0.219
Labour price 0.003 0.007
Loss ratio in 2005 0.899∗∗ 0.184

Note: Results obtained with stata

∗ ∗ ∗, ∗∗ and ∗ denote signi�cance at 1, 5 and 10 per cent level respectively.
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a signi�cant negative e�ect on irrigation choice: the more expensive the irrigation water,
the lower the probability of becoming an irrigating farmer. Conversely, the price of labor
input decreases the probability to irrigate (at the 10% level of signi�cance.) This can be
explained by the labor-intensity of irrigating agriculture. Secondary education increases
the probability of becoming an irrigator (at the 10% level of signi�cance). There is also a
gender e�ect that is signi�cant at the 5% level.

Finally, there is a direct and signi�cant link between having yield insurance and adopt-
ing irrigation. Having opted for yield insurance signi�cantly decreases the probability of
adopting irrigation. This may indicate that yield insurance and irrigation could be substi-
tutes. In that sense, irrigation can be considered as being a self-insurance tool.

The decision to buy yield insurance is sensitive to the previous year's water availability.
The higher the water availability, the lower the probability of the farmer buying yield
insurance. The higher the variance of water availability, the higher the probability of the
farmer buying yield insurance14. With a higher educational level (compared to primary
education), the probability of buying yield insurance is increased, both for secondary and
higher education. Higher education favors the knowledge of risk management instruments
such as yield insurance. On the other hand, the older the farmer, the lower his propensity
to insure. There is also a gender e�ect: male farmers are more likely to buy insurance.
Finally, the loss ratio in 2005 has a signi�cant positive e�ect on buying yield insurance:
the higher the previous year's loss ratio, the higher the probability of farmers buying yield
insurance. This result is in line with results reported in the literature (see for example
Garrido and Zilberman, 2008; Goodwin et al., 2004). Higher loss ratios indicate that the
investment in insurance is pro�table, which explains this result.

The main conclusion of this simultaneous probit estimation is that irrigation choice is
sensitive to the variability of both climatic and economic variables. It is also sensitive to
the presence of subsidy payments and yield insurance. This suggests that farmers may
adopt irrigation to reduce their production risk. We took these factors into account in the
following estimation step where we focus on the volume of irrigation water that is used in
the production process.

5.2 Joint estimation of production and risk preference parameters

Table 3 shows the results of the joint estimation of production and risk preference param-
eters. All linear and squared terms of the mean yield function have signi�cant coe�cients
at the 5% level. For labor input, the direct marginal e�ect is positive and the squared
term is negative. This suggests that there are decreasing returns to scale for the use of
labor. For water and fertilizer, the direct marginal e�ect is negative and the squared term
is positive. This suggests increasing returns to scale. All crossed e�ects are positive which
means that inputs are complementary.

14The asymmetric distribution of water, in favor of less negative areas, encourages the farmer to refrain
from buying yield insurance.
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Table 3: Estimation results§

Parameter Variable Estimated Standard
coe�cient error

Mean yield function
αw water -0.0089∗∗ 0.0027
αww water*water 0.0000∗∗ 0.0000
αf fertilizer -0.2129∗∗ 0.0683
αff fertilizer*fertilizer 0.0018∗∗ 0.0004
αl labour 3.1217∗∗ 0.1618
αll labour*labour -0.0373∗∗ 0.0024
αwf water*fertilizer 0.0000∗ 0.0000
αwl water*labour 0.0001∗∗ 0.0000
αfl fertilizer*labour 0.0021∗∗ 0.0004
σu inverse mills ratio 51.151∗∗ 13.334

Risk production function
βw water 0.3242∗∗ 0.0180
βf fertilizer 0.2658∗∗ 0.0445
βl labour 0.4356∗∗ 0.0700

AR function
δ0 -0.0038 0.0034
δ1 0.0232∗∗ 0.0115
δ2 -0.0167∗ 0.0090
γ -0.2746∗∗ 0.1381

§ FIML estimation. 165 observations. Results obtained with sas.

∗ ∗ ∗, ∗∗ and ∗ denote signi�cance at 1, 5 and 10 per cent level respectively.
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All three inputs have a signi�cant positive impact on the variance of yields (as indicated
by the coe�cients of the risk function), at conventional statistical con�dence levels. Using
more water volumes thus increases the variability of yields. This is in line with Just
and Pope (1979), who found that fertilizers increased mean yield but also signi�cantly
increased the variance of yield. Table 3 also shows the estimated coe�cient associated
with the inverse Mill's ratio, which is signi�cant. This means that the correction for
the sample selection bias was necessary. Finally, table 3 lists the parameters of the risk
function, which are all signi�cant, and were used to compute the Arrow-Pratt risk aversion
coe�cient.

Table 4: Expected pro�t, elasticities and risk preference estimations

Mean Standard
deviation

Expected Pro�t
µπ 0.9187 0.7374
σµπ 2.4164 1.2327

Elasticities wrt mean function
ξxw 0.0457 0.2158
ξxf 0.1525 0.2430
ξxl 0.6480 1.4940

Risk preferences and attitudes
AR 0.0060 0.0124
DR -0.0077 0.0119
θ -0.0205 0.0982

RRP 0.0001 0.0004

Table 4 indicates mean and variance of estimated pro�ts, including CAP subsidies. The
expected pro�t of our population is equal to 918.7 euros/ha (compared to 1020 euros/ha
when computed with observed yields). Table 4 also indicates the elasticity of inputs:
the elasticity of input x on the mean part of the yield function, f , is given by : ξx ≡
∂f
∂x

x
f . We computed elasticities for each individual farm, and then we computed mean

and standard deviation of the sample. On average, all inputs have a positive marginal
impact on mean yield. A 1% increase in irrigation water increases mean yields by 0.05%
on average. Likewise, a 1% increase in fertilizer (labor) increases the mean yields by 0.15%
(0.65%) on average.15

15Note that standard deviations are large, i.e. there are some farms for which the elasticity has the
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Figure 2: Arrow-Pratt coe�cient as a function of expected pro�ts

R
is

k 
A

ve
rs

io
n 

(A
R

)

Expected Profit

Finally, table 4 shows the risk preferences that can be derived from the above estimation
results. We can see that θ is negative (-0.02) which means that irrigating farmers are risk
averse. The mean Arrow-Pratt (AR) coe�cient is positive, which indicates risk aversion,
but close to zero (AR=0.006) which means that risk preferences are quite close to risk
neutrality. It is interesting to plot the individual AR points as a function of expected
pro�ts (see �gure 2). We can see that most corn growers display a very slight risk aversion,
except for those who generate either very high pro�ts (µπ > 2600) or very low pro�ts
(µπ < 200), these farmers being risk lovers. The downside-risk coe�cient is negative, which
means that farmers are averse to extreme pro�les of the pro�t function, especially to big
losses. Finally, we can also interpret the relative risk premium, RRP, which represents the
percentage of wealth that the farmer is willing to pay to avoid taking additional risks. In
our case, the average farmer is willing to pay 0.01% of his mean pro�t, i.e. 0.09 e. This
may con�rm that preferences are close to risk neutrality. In contrast to earlier studies,
and following Lence (2009) and Just and Just (2011), we do not interpret the agent's type
of risk aversion, i.e. whether they exhibit increasing, decreasing or constant risk aversion,
because it cannot be robustly derived from this type of model.

Most previous studies in the literature reported risk aversion. However, there is only
one study that considers irrigating farmers: Groom et al. (2008) found a mean Arrow-Pratt
coe�cient of 0.34 for cereal growers and 0.072 for vegetable growers in Cyprus. Reynaud
(2009) suggests using Arrow-Pratt coe�cients between −2 and +2 for irrigating cereal

opposite sign. For example, for fertilizer use, 10% of the sample has a negative elasticity.
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Figure 3: Distribution of observed pro�ts for non-irrigating (0) and irrigating (1) farmers

pro�t (€)

Figure 4: Distribution of estimated pro�ts for non-irrigating (0) and irrigating (1) farmers

expected pro�t (€)
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growers, but without performing any estimation. Our Arrow-Pratt values are very low,
indicating a very small risk aversion, but they are within this proposed range of results.
We may explain the small risk aversion by the fact that we consider CAP subsidies as one
element of farmers' revenues. CAP earnings constitute a stable part of earnings and tend
to decrease risk aversion, as also shown in Koundouri et al. (2009). CAP subsidies account
for over 50% of total expected pro�ts in our sample.

Finally, we can compare the distribution of pro�ts for irrigating and non-irrigating
farmers, both in the initial dataset (with y as yield) and in our estimated dataset (with
f(.) as yield). Figure 3 shows the distribution of pro�ts in the observed dataset. We can
see that non-irrigating farmers have a lower mean and a higher variance than irrigating
farmers. They also have a negative skewness whereas the distribution for irrigating farmers
is right-skewed: irrigating farmers make fewer big losses. This pro�le was con�rmed after
our joint estimation procedure: irrigating farmers' pro�ts (µ) are higher than those of
non-irrigating farmers, variance is smaller and skewness is less negative, as shown in �gure
4). Thus, we show that irrigation decreases the variance of pro�ts16.

6 Concluding remarks

In this paper, we studied the role of farmers' input decisions in the management of produc-
tion risk and focused on the role of irrigation as a possible self-insurance tool. We found
that a farmer's decision whether to irrigate (or not) depends on his decision to purchase
yield insurance (or not). Yield insurance decreases the probability of adopting irrigation.
The introduction of a yield insurance policy, such as the one set up in France in 2005,
may thus lead to a reduction in the overall use of agricultural water, which might be an
interesting side-e�ect for policy making.

We also analyzed the impact of irrigation water use in the production process of irri-
gating farmers. As expected, we con�rm that irrigation increases mean yields and pro�ts.
But using more volumes of irrigation water when already being an irrigator increases the
variance of yields (at least for risk-averse farmers). The insurance dimension of irrigation
is thus restricted. This result may be due to the fact that in 2006 and 2007 the need for
water was not very large in the French agricultural sector, compared to the four previous
years. It would be interesting to replicate this study in a country with dryer climate where
variability of yield should be greater.

Finally, when it comes to the impact of irrigation on pro�ts, we showed that irrigating
farmers have higher means, lower variances and less negative skewness than non-irrigating
farmers. This result may be explained by the fact that irrigation increases the quality
of production and opens new markets, at higher prices. It appears thus that it is worth
investing in irrigation technology because this improves the overall pro�le of the pro�t

16The fact that there are some negative outliers in our estimated results might indicate underestimation
of the mean yield, f(.). It might also be due to the fact that in our estimated dataset, farmers who make
losses are risk lovers, which may encourage them to adopt even more extreme production behavior.
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distributions.
We are aware that the most recent literature sheds serious doubts on the validity of

the methodology adopted in this paper for estimating risk attitudes (see Lence, 2009; Just,
2008; Just and Just, 2011; Just and Peterson, 2010). In particular, Just and Just (2011)
showed that `many speci�cations of risk preferences paired with particular speci�cations of
[...] production risk, or production structure �t behavioral equations with a given revealed
preference dataset equally well, regardless of the number of observations'. They conclude
that global identi�cation of risk preferences and risk from the estimation of behavioral
equations alone is impossible. Just (2008) concludes that the above approach is therefore
insu�cient for normative policy analysis. In our case, and following the previous literature,
we have assumed the AR function to be quadratic. The results we report are only valid
under this assumption. We cannot exclude that other results are possible for other speci-
�cations. But as pointed out by Just and Just (2011), the joint estimation method cannot
overcome the problem of misspeci�cation as misspeci�cation tests are invalidated. Hence,
we cannot give normative policy advice. We also restrain the AR function to depend on
mean pro�ts only, which is again a strong assumption, because risk preferences may also
depend on other drivers (see Just, 2011). Finally, Just and Peterson (2010) argue that such
estimation problems in many empirical applications may stem from the wrong assumption
of expected utility theory (EUT). They show this for the joint estimation method pro-
posed by Love and Buccola (1991). Our paper is clearly embedded in the framework of
EUT, assuming maximization of expected utility to be a good benchmark behaviour for a
representative farmer.

In further work, it would be interesting to compare the above approach with the upcom-
ing estimation methods for risk and preferences, including those considering non-expected
utility theory. Concerning our speci�c topic, it would be interesting to gain more insight
into the possible complementarities of irrigation and other insurance tools. The issue of
complementarity is only very imperfectly addressed by our model. We could also ana-
lyze a broader population, for example less specialized producers. This means that the
non-jointness assumption would no longer hold and would imply the need for di�erent
assumptions on the distribution of production costs and the interactions between di�er-
ent types of production. Finally, another interesting point would be to try to integrate
skewness into an estimation framework of risk preferences and production decisions. This
implies re-thinking the way the risk-aversion coe�cient is computed and constitutes an-
other possible line of future research.
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